ImageVerifierCode 换一换
格式:DOCX , 页数:31 ,大小:776.98KB ,
资源ID:958202      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958202-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版九年级数学上册第二十三章旋转专项测评试卷(含答案详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版九年级数学上册第二十三章旋转专项测评试卷(含答案详解版).docx

1、人教版九年级数学上册第二十三章旋转专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正三角形ABC的边长为3,将ABC绕它的外心O逆时针旋转60得到ABC,则它们重叠部分的面积是()A2BCD

2、2、如图,在中,将绕点顺时针旋转得到,点A、B的对应点分别是,点是边的中点,连接,则下列结论错误的是()AB,CD3、如图,与关于成中心对称,不一定成立的结论是()ABCD4、已知点与点关于原点对称,则点的坐标()ABCD5、在平面直角坐标系中,点关于原点对称点在()A第一象限B第二象限C第三象限D第四象限6、将矩形绕点顺时针旋转,得到矩形当时,下列针对值的说法正确的是()A或B或CD7、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD8、下列图形中既是中心对称图形,又是轴对称图形的是()ABCD9、如图,在中,将绕点逆时针旋转到的位置,使得,则的度数是()ABCD10、将抛物线先绕

3、坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点和关于原点对称,则的值是_2、如图,菱形的边长为,边在轴上,若将菱形绕点逆时针旋转75,得到菱形,则点的对应点的坐标为_3、如图,将矩形绕点逆时针旋转,连接,当为_时4、如图,在平面直角坐标系中,点P(1,1),N(2,0),MNP和M1N1P1的顶点都在格点上,MNP与M1N1P1是关于某一点中心对称,则对称中心的坐标为_.5、如图,两块完全一样的含30角的三角板完全重叠在一起,若绕长直角边中点M转动,使上面一块三角板的斜边刚好经过下面一块三角板的直

4、角顶点,已知A30,BC2,则此时两直角顶点C,C间的距离是 _三、解答题(5小题,每小题10分,共计50分)1、已知和都是等腰直角三角形,(1)如图1,连接,求证:;(2)将绕点O顺时针旋转如图2,当点M恰好在边上时,求证:;当点A,M,N在同一条直线上时,若,请直接写出线段的长2、规定:在平面内,如果一个图形绕一个定点旋转一定的角度(0180)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度称为这个图形的一个旋转角例如:正方形绕着两条对角线的交点O旋转90或180后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角根据以上规定,回答问题:(1)下列图形是旋转对

5、称图形,但不是中心对称图形的是_;A矩形B正五边形C菱形D正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:_(填序号);(3)下列三个命题:中心对称图形是旋转对称图形;等腰三角形是旋转对称图形;圆是旋转对称图形,其中真命题的个数有()个;A0B1C2D3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45,90,135,180,将图形补充完整3、如图,在平面直角坐标系中,RtABC的三个顶点分别是,(1)将ABC以点C为旋转中心旋转180,画出旋转后对应的;平移ABC,若点A对应的点的坐标为,画出(2)若,绕某一点旋转可以得到(1)中的,直接写出旋转中心的坐标

6、:_;4、图1是边长分别为a和b(ab)的两个等边三角形纸片ABC和CDE叠放在一起(C与C重合)的图形(1)感知:固定ABC,将CDE绕点C按顺时针方向旋转20,连结AD,BE,如图2,则可证CBECAD,依据 ;进而得到线段BEAD,依据 (2)探究:若将图1中的CDE,绕点C按顺时针方向旋转120,使点B、C、D在同一条直线上,连结AD、BE,如图3线段BE与AD之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE与AD之间的数量关系;APB的度数 (3)应用:若将图1中的CDE,绕点C按逆时针方向旋转一个角度(0360),当等于多少度时,BCD的面积最大?请直接写出答案5

7、、图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上(1)将向右平移5个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出-参考答案-一、单选题1、C【解析】【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解【详解】解:作AMBC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形ABC是等边三角形,AMBC,ABBC3,BMCMBC,BAM30,AMBM,ABC的面积BCAM3,重叠部分的面积ABC的面积;故选:C【考点】本题考查了三角形的外心、等边三角形的性

8、质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键2、D【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30角的直角三角形的性质可判断D【详解】A将ABC绕点C顺时针旋转60得到DEC,BCE=ACD=60,CB=CE,BCE是等边三角形,BE=BC,故A正确; B点F是边AC中点,CF=BF=AF=AC,BCA=30,BA=AC,BF=AB=AF=CF,FCB=FBC=30,延长BF交CE于点H,则BHE=HBC

9、+BCH=90,BHE=DEC=90,BF/ED,AB=DE,BF=DE,故B正确CBFED,BF=DE,四边形BEDF是平行四边形,BC=BE=DF, AB=CF, BC=DF,AC=CD,ABCCFD,故C正确;DACB=30, BCE=60,FCG=30,FG=CG,CG=2FGDCE=CDG=30,DG=CG,DG=2FG故D错误故选D【考点】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键3、D【解析】【分析】根据中心对称的性质即可判断【详解】解:对应点的连

10、线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确;和不是对应角,D错误故选:D【考点】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形4、B【解析】【分析】根据关于原点对称点的坐标变化特征直接判断即可【详解】解:点与点关于原点对称,则点的坐标为,故选:B【考点】本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数5、D【解析】【分析】先依据,即可得出点P所在的象限,再根据两个点关于原点对称时,它们的坐标符号相反,即可得出结论【详解】解:,点在第二象限,点关于原点对称点在第四象

11、限.故选D【考点】本题主要考查了关于原点对称的两个点的坐标特征,明确关于原点对称的两个点的横、纵坐标均互为相反数是解答的关键6、A【解析】【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据DAG=60,即可得到旋转角的度数【详解】如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GC=GB,GHBC,四边形ABHM是矩形,AM=BH=,GM垂直平分AD,GD=GA=DA,ADG是等边三角形,DAG=60,旋转角=60;当点G在AD左侧时,同理可得ADG是等边三角形,DAG=60,旋转角=360-60=30

12、0,故选:A【考点】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角7、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键8、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既

13、是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【考点】本题考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.9、C【解析】【分析】根据旋转的性质得AC=AC,BAB=CAC,再根据等腰三角形的性质得ACC=ACC,然后根据平行线的性质由CCAB得ACC=CAB=70,则ACC=ACC=70,再根据三角形内角和计算出CAC=40,所以BAB=40

14、【详解】绕点逆时针旋转到的位置,故选C.【考点】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角也考查了平行线的性质10、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C

15、【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键二、填空题1、-3【解析】【分析】先求出的值,然后相加即可【详解】解:点和关于原点对称,则a=-1,b=-2,故答案为:-3【考点】本题考查了关于原点对称点的坐标变化规律,解题关键是熟知变化规律,准确进行计算2、【解析】【分析】根据菱形的性质可得出AOC=60,则三角形OAC为等边三角形,即AC=,根据菱形对角线的性质可得出AOE=30,根据勾股定理可得OE, OB,再根据旋转的性质可得OB=OB1,B1OF=45,根据勾股定理即可得

16、出OF与B1F的长度,即可得出答案【详解】解:如图,连接AC与OB相交于点E,过点B1作B1Fx轴,垂足为F,四边形OABC为菱形,OA=OC,AOC是等边三角形,OC=OA=AC=,ACOB,在RtOAE中,OA=,AE=AC=,OE=AE=,OB=,COB=AOC=30,BOB1=75,B1OF=180-60-BOB1=180-60-75=45,在RtB1OF中,OB1=OB=,OF=B1F,OF2+B1F2=OB12,可得OF=B1F=,点B1在第二象限,点B1的坐标为故答案为:【考点】本题主要考查了菱形及旋转的性质,熟练应用相关性质进行计算是解决本题的关键3、60【解析】【分析】连接,

17、过作于,交于,根据等腰三角形的性质与判定得,进而得到垂直平分,证得为等边三角形便可【详解】解:连接,过作于,交于,如下图,要使,则,四边形和四边形都是矩形,垂直平分,由旋转性质知,是等边三角形,故当为时,故答案为:【考点】本题主要考查了矩形的性质,旋转的性质,等边三角形的性质与判定,关键是证明垂直平分4、(2,1)【解析】【分析】观察图形,根据中心对称的性质即可解答.【详解】点P(1,1),N(2,0),由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,对称中心的坐标为(2,1),故答案为(2,1)【

18、考点】本题考查了中心对称的性质:关于中心对称的两个图形能够完全重合; 关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分5、【解析】【分析】先求解,由旋转的性质可得可证是等边三角形,即可求的长【详解】解:如图,连接, 点M是AC中点, AM=CM=, 旋转, , ,是等边三角形 故答案为:【考点】本题考查了等边三角形的判定,勾股定理的应用,旋转的性质,熟练运用旋转的性质是解本题的关键三、解答题1、 (1)见解析;(2)见解析;或【解析】【分析】(1)证明AMOBNO即可;(2)连接BN,证明AMOBNO,得到A=OBN=45,进而得到MBN=90,且OMN为等腰直角三角形,

19、再在BNM中使用勾股定理即可证明;分两种情况分别画出图形即可求解【详解】解:(1)和都是等腰直角三角形,又,,,;(2)连接BN,如下图所示:,且,且为等腰直角三角形,在中,由勾股定理可知:,且;分类讨论:情况一:如下图2所示,设AO与NB交于点C,过O点作OHAM于H点,,为等腰直角三角形,,在中,,;情况二:如下图3所示,过O点作OHAM于H点,,为等腰直角三角形,,在中,,;故或【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型2、(1)B;(2)(1)(3)(5);(3)C;(4)

20、见解析【解析】【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计【详解】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5)故答案为:(1)(3)(5)(3)中心对称图形,旋转180一定会和本身重合,是旋转对称图形;故命题正确;等腰三角形绕一个定点旋转一定的角度(0180)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故不正确;圆具有旋转不变性,绕圆心旋转任意

21、角度一定能与自身重合,是旋转对称图形;故命题正确;即命题中正确,故选:C(4)图形如图所示:【考点】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题3、 (1)见解析(2)(1,2)【解析】【分析】(1)根据旋转的性质即可画出旋转后对应的;根据平移的性质,点A对应的点A2的坐标为(4,5),即可画出;(2)结合(1)和旋转的性质即可得旋转中心的坐标(1)解:如图,和即为所求;(2)解:结合(1)中的图和旋转的性质,可得,旋转中心的坐标为:(1,2)【考点】本题考查了作图旋转变换,坐标与图形变化平移,解决本题的关键是掌握旋转的性质4、(1)定理(两边和它们

22、的夹角对应相等的两个三角形全等),全等三角形的对应边相等;(2)仍存在,证明见解析;(3)或【解析】【分析】(1)先根据等边三角形的性质可得,从而可得,再根据三角形全等的判定定理可证,然后根据全等三角形的性质可得;(2)先根据等边三角形的性质可得,从而可得,再根据三角形全等的判定定理可证,然后根据全等三角形的性质可得;先根据全等三角形的性质可得,再根据三角形的外角性质即可得;(3)先画出图形,过点作于点,再根据直角三角形的定义可得,然后根据三角形的面积公式和旋转角的定义即可得出答案【详解】解:(1)和都是等边三角形,即,在和中,故答案为:定理(两边和它们的夹角对应相等的两个三角形全等),全等三角形的对应边相等;(2)仍存在,证明如下:和都是等边三角形,即,在和中,;,故答案为:;(3)如图,过点作于点,当且仅当,即点与点重合时,等号成立,当时,的面积最大,此时旋转角或【考点】本题考查了等边三角形的性质、图形的旋转等知识点,正确找出全等三角形是解题关键5、(1)作图见解析;(2)作图见解析【解析】【分析】(1)利用点平移的规律找出、,然后描点即可;(2)利用网格特点和旋转的性质画出点,即可【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【考点】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1