1、九年级数学上册第二十一章一元二次方程难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为,点Q的速度为,点Q移动到C点
2、后停止,点P也随之停止运动,当的面积为时,则点P运动的时间是()AB或CD2、一元二次方程y24y30配方后可化为()A(y2)27B(y+2)27C(y2)23D(y+2)233、在解一元二次方程x2+px+q0时,小红看错了常数项q,得到方程的两个根是3,1小明看错了一次项系数P,得到方程的两个根是5,4,则原来的方程是()Ax2+2x30Bx2+2x200Cx22x200Dx22x304、关于x的一元二次方程x24x+3=0的解为()Ax1=1,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=35、用配方法解方程时,下列变形正确的是()ABCD6、已知等腰三角形的两边长
3、分别是一元二次方程的两根,则该等腰三角形的底边长为()A2B4C8D2或47、若关于x的一元二次方程有实数根,则字母k的取值范围是()AB且CD且8、已知关于x的一元二次方程有两个不相等的实数根x1,x2若,则m的值是()A2B1C2或1D不存在9、x=是下列哪个一元二次方程的根()A3x2+5x+1=0B3x25x+1=0C3x25x1=0D3x2+5x1=010、如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长设剪去的小正方形边长是xcm,根据题意可列方程为()
4、A10646x=32B(102x)(62x)=32C(10x)(6x)=32D1064x2=32第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知m,n是一元二次方程x2+4x20的两根,则代数式m2+n2的值等于 _2、将一元二次方程x2+8x+13=0通过配方转化成(x+n)2=p的形式(n,p为常数),则n=_,p=_3、方程(m1)x|m|+14x+3=0是一元二次方程,则m满足的条件是:_,此方程的二次项系数为:_,一次项系数为:_,常数项为:_4、已知a,b是一元二次方程x2+x10的两根,则3a2b的值是_5、设,是方程的两个实数根,则的值为_三、解答题
5、(5小题,每小题10分,共计50分)1、阅读下面的解题过程,求的最小值解:=,而,即最小值是0;的最小值是5依照上面解答过程,(1)求的最小值;(2)求的最大值2、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?3、解方程:(3x-1)2-2504、商场某种商品平均每天可销售30件,每件盈利50元 为了尽快减少库存,商场决定采取适当的降价措施 经调查
6、发现,每件商品每降价1元,商场平均每天可多售出 2件设每件商品降价x元 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?5、已知m是方程的一个根,试求的值.-参考答案-一、单选题1、A【解析】【分析】设出动点P,Q运动t秒,能使的面积为,用t分别表示出BP和BQ的长,利用三角形的面积计算公式即可解答【详解】解:设动点P,Q运动t秒,能使的面积为,则BP为(8-t)cm,BQ为2tcm,由三角形的面积公式列方程得(8-t)2t=15,解得t1=3,t2=5(当t2=5,B
7、Q=10,不合题意,舍去)动点P,Q运动3秒,能使的面积为故选A【考点】本题考查了一元二次方程的应用借助三角形的面积计算公式来研究图形中的动点问题2、A【解析】【分析】先表示得到,再把方程两边加上 4 ,然后把方程左边配成完全平方形式即可 【详解】解:,故选【考点】本题考查解一元二次方程配方法: 将一元二次方程配成的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法 3、B【解析】【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.【详解】解: 小红看错了常数项q,得到方程的两个根是3,1,所以此时方程为: 即: 小明看错了一次项系数P,得到方程的两
8、个根是5,4,所以此时方程为: 即: 从而正确的方程是: 故选:【考点】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.4、C【解析】【分析】利用因式分解法求出已知方程的解【详解】x2-4x+3=0,分解因式得:(x-1)(x-3)=0,解得:x1=1,x2=3,故选C【考点】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)5、B
9、【解析】【分析】将方程的常数项移到右边,两边都加上,左边化为完全平方式,右边合并即可得到结果【详解】移项得:,配方得:,即,故选:B【考点】本题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,利用平方根定义开方转化为两个一元一次方程来求解6、A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案【详解】解:x26x+8=0(x4)(x2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成
10、三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A【考点】本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键7、D【解析】【分析】利用一元二次方程的定义和根的判别式的意义得到k0且=(-2)2-4k(-3)0,然后求出两不等式的公共部分即可【详解】解:根据题意得k0且=(-2)2-4k(-3)0,解得且k0故选:D【考点】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方
11、程有两个相等的实数根;当0时,方程无实数根也考查了一元二次方程的定义8、A【解析】【分析】先由二次项系数非零及根的判别式,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出,结合,即可求出m的值【详解】解:关于x的一元二次方程mx2(m+2)x+=0有两个不相等的实数根x1、x2,解得:m1且m0,x1、x2是方程mx2(m+2)x+=0的两个实数根,m=2或1,m1,m=2故选:A【考点】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式,找出关于m的不等式组;(2)牢记,9、D【解析】【分析】根据一元二次方程的
12、求根公式进行求解.【详解】一元二次方程的求根公式是,对四个选项一一代入求根公式,正确的是D.所以答案选D.【考点】本题的解题关键是掌握一元二次方程求根公式.10、B【解析】【详解】分析:设剪去的小正方形边长是xcm,则纸盒底面的长为(102x)cm,宽为(62x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解详解:设剪去的小正方形边长是xcm,则纸盒底面的长为(102x)cm,宽为(62x)cm,根据题意得:(102x)(62x)32故选B点睛:本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键
13、二、填空题1、20【解析】【分析】根据一元二次方程根与系数的关系与完全平方公式即可求解【详解】m,n是一元二次方程的两根,故答案为:20【考点】本题考查一元二次方程根与系数的关系和利用完全平方公式变形求解掌握一元二次方程根与系数的关系是解题关键2、 4 3【解析】【分析】依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得【详解】解:,则,即,、,故答案为:4,3【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数3、
14、 m=1 2 4 3【解析】【分析】根据一元二次方程的定义解答即可【详解】解:根据题意得,|m|+1=2且m10,解得m=1或1且m1,所以,m=1,m1=11=2,所以,此方程为,所以,此方程的二次项系数为2,一次项系数为4,常数项为3故答案为:m=1;2,4,3【考点】本题考查了一元二次方程的一般形式是:(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中叫二次项,叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项4、8【解析】【分析】由根与系数的关系及根的定义可知a+b1,ab1,a2+a1,据此对3a2b进行变形计算可得结果.【
15、详解】解:由题意可知:a+b1,ab1,a2+a1,原式3(1a)b+33ab+32a(a+b)+32a+1+42a+4+4+4+48,故答案为:8【考点】本题考查了一元二次方程的根与系数的关系及根的定义,利用性质对式子进行降次变形是解题关键.5、【解析】【分析】由韦达定理可分别求出与的值,再化简要求的式子,代入即可得解【详解】解:由方程可知,故答案为:【考点】本题考查一元二次方程根与系数的关系,利用韦达定理可简便运算三、解答题1、(1)2019;(2)5【解析】【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可;(2)利用完全平方公式把原式变形,利用非负数的性质解答即可;【
16、详解】(1),的最小值为2019;(2),的最大值是5.【考点】本题考查的是配方法的应用,掌握完全平方公式和偶次方的非负性是解题的关键2、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元【解析】【分析】(1)根据图象可得:当,当,;再用待定系数法求解即可;(2)根据这种干果每千克的利润销售量=2090列出方程,解方程即可【详解】解:(1)设一次函数解析式为:,根据图象可知:当,;当,;,解得:,与之间的函数关系式为;(2)由题意得:,整理得:,解得:,让顾客得到更大的实惠,.答:商贸公司要想获利2090元,这种干果每千克应降价9元【考点】本题考查了一元二次方程的应用和一次函
17、数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键3、【解析】【分析】移项,根据平方根的定义开方,转化为两个一元一次方程,分别求出一次方程的解即可得到原方程的解【详解】移项,得:,或,【考点】本题考查了直接开方法求一元二次方程的解,直接开方法是根据平方根的定义来求解的,方程左边为完全平方式,右边为非负常数4、(1) 2x,(2)每件商品降价20元,商场日盈利可达2100元【解析】【详解】(1) 2x,(2)解:由题意,得(302x)(50x)2 100解之得x115,x220该商场为尽快减少库存,降价越多越吸引顾客x20答:每件商品降价20元,商场日盈利可达2 100元5、2015【解析】【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算【详解】解:m是方程的一个根,代入即得.或.【考点】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单.
Copyright@ 2020-2024 m.ketangku.com网站版权所有