1、九年级数学上册第二十一章一元二次方程必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于的一元二次方程有两个实数根,那么的取值范围是()AB且C且D2、生物兴趣小组的学生,将自己收集的标本向
2、本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()ABCD3、已知关于x的一元二次方程(m1)x22x10有实数根,则m的取值范围是()Am2Bm2Cm2且m1Dm2且m14、九章算术“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈10尺,1尺10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()Ax2+12(x+0.68)2Bx2+(x+0.68)212Cx2+1002(x+68)2Dx2+(x+68)210025、已知m、n、
3、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程6+k+2=0的两个根,则k的值等于()A7B7或6C6或7D66、一元二次方程x22x=0的两根分别为x1和x2,则x1x2为()A2B1C2D07、关于x的一元二次方程x24x+3=0的解为()Ax1=1,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=38、设方程的两根分别是,则的值为()A3BCD9、一元二次方程的解是A,B,C,D,10、定义运算:例如则方程的根的情况为()A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根第卷(非选择题 70分)二、填空题(5小题,每小题4分
4、,共计20分)1、一元二次方程x2-10x+252(x5)的解为_2、方程(m1)x|m|+14x+3=0是一元二次方程,则m满足的条件是:_,此方程的二次项系数为:_,一次项系数为:_,常数项为:_3、已知一元二次方程ax2+bx+c=0(a0)有一个根为-1,则a-b+c=_4、已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,则这个两位数是_5、已知关于的不等式组无解,且关于y的一元二次方程有两个实数根,则整数的值可以是_三、解答题(5小题,每小题10分,共计50分)1、用指定的方法解下列方程:(1);(直接开平方法)(2);(配方法)
5、(3);(公式法)(4)(因式分解法)2、在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1) 原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2) 到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年
6、6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.3、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是
7、多少万人?门票价格应是多少元?4、某医疗器械生产厂生产某种医疗器械,80条生产线齐开,每条生产线每个月可生产8台该种医疗器械该厂经过调研发现:当生产线适当减少后(减少的条数在总条数的20%以内时),每减少10条生产线,每条生产线每个月反而会多生产4台若该厂需要每个月的产能达到840台,那么应减少几条生产线?5、解下列方程:(1);(2)-参考答案-一、单选题1、C【解析】【分析】根据关于x的一元二次方程kx2-3x+1=0有两个实数根,知=(-3)2-4k10且k0,解之可得【详解】解:关于x的一元二次方程kx2-3x+1=0有两个实数根,=(-3)2-4k10且k0,解得k且k0,故选:C【
8、考点】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立2、B【解析】【分析】由题意可知,每个同学需赠送出(x-1)件标本,x名同学需赠送出x(x-1) 件标本,即可列出方程【详解】解:由题意可得,x(x-1)=182,故选B【考点】本题主要考查了一元二次方程的应用,审清题意、确定等量关系是解答本题的关键3、D【解析】【分析】根据二次项系数非零及根的判别式0,即可得出关于m的一元一次不等式组,解之即可得出m的取值
9、范围【详解】解:因为关于x的一元二次方程x22xm0有实数根,所以b24ac224(m1)10,解得m2又因为(m1)x22x10是一元二次方程,所以m10综合知,m的取值范围是m2且m1,因此本题选D【考点】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式0,找出关于m的一元一次不等式组是解题的关键4、D【解析】【分析】1丈100寸,6尺8寸68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【详解】解:1丈100寸,6尺8寸68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意
10、得:x2+(x+68)21002.故选:D.【考点】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键5、B【解析】【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即=(6)24(k+2)=0,解方程即可得到结论【详解】当m=4或n=4时,即x=4,方程为4264+k+2=0,解得:k=6;当m=n时,6+k+2=0,解得:,综上所述,k的值等于6或7,故选:B【考点】本题主要考查了一元二次方程的根、根的判别式以及等腰三角形的性质,由等腰三角形的性质得出方程有一个实数根为2或方程有两个相等的实数根是解题的关键6、D【解析】【详解】分析:根据
11、根与系数的关系可得出x1x2=0,此题得解详解:一元二次方程x22x=0的两根分别为x1和x2,x1x2=0故选D点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键7、C【解析】【分析】利用因式分解法求出已知方程的解【详解】x2-4x+3=0,分解因式得:(x-1)(x-3)=0,解得:x1=1,x2=3,故选C【考点】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)8、A
12、【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率9、A【解析】【分析】先把方程化为一般式, 然后利用因式分解法解方程 【详解】解:,或,所以,故选【考点】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降
13、次, 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想) 10、A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案【详解】解:根据定义得: 原方程有两个不相等的实数根,故选【考点】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键二、填空题1、x15,x27【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:(x5)22(x5)0,(x5)(x7)0,则x50或x70,解得x15,x27,故答案为:x15,x27【考点】本题考查了解一元二次方程,能把一元二次方程转化成
14、一元一次方程是解此题的关键2、 m=1 2 4 3【解析】【分析】根据一元二次方程的定义解答即可【详解】解:根据题意得,|m|+1=2且m10,解得m=1或1且m1,所以,m=1,m1=11=2,所以,此方程为,所以,此方程的二次项系数为2,一次项系数为4,常数项为3故答案为:m=1;2,4,3【考点】本题考查了一元二次方程的一般形式是:(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中叫二次项,叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项3、0【解析】【分析】根据一元二次方程的解的定义,将x=-1代入关于x的一元二次方程ax2
15、+bx+c=0(a0)即可求得a-b+c的值【详解】解:关于x的一元二次方程ax2+bx+c=0(a0)的一个根为-1,x=-1满足关于x的一元二次方程ax2+bx+c=0(a0),即a-b+c=0故答案是:0【考点】本题考查的是一元二次方程的根即方程的解的定义一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立4、84【解析】【分析】等量关系为:个位上的数字与十位上的数字的平方和这个两位数4,把相关数值代入求得整数解即可【详解】设十位上的数字为x,则个位上的数字为(x4)可列方程为:x2+(x4)210x+(x4)4解得:x18,x
16、21.5(舍),x44,10x+(x4)84答:这个两位数为84故答案为:84【考点】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键5、3,4【解析】【分析】先利用不等式组的解集情况可确定m3,再根据一元二次方程的定义和判别式的意义得到m0且424m0,解得m4且m0,所以m的范围为3m4,然后找出此范围内的整数即可【详解】解: ,解不等式,得xm,解不等式,得x3,关于x的不等式组无解,m3,关于y的一元二次方程有两个实数根,424m0,且m0,解得m4且m0,3m4, 符合条件的整数m为3,4故答案为:3,4【考点】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)
17、的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根也考查了解一元一次不等式组熟练掌握一元二次方程根的判别式及一元一次不等式组的解法是解题的关键三、解答题1、(1);(2);(3);(4)【解析】【分析】(1)直接开平方转化为一元一次方程求解即可;(2)利用配方法求解即可;(3)利用求根公式进行求解即可;(4)先变号,再提公因式进行计算即可【详解】解:(1),开平方,得,解得;(2),移项,得,二次项系数化为1,得,配方,得,即,开平方,得,解得;(3),即;(4),分解因式,得,或,解得【考点】本题考查一元二次方程的解法,熟
18、练掌握每种方法的解题步骤是解题的关键2、(1)40千米;(2)10.【解析】【分析】(1)设道路硬化的里程数是x千米,根据道路硬化的里程数至少是道路拓宽的里程数的4倍,列不等式进行求解即可得;(2)根据题意先求出2017年道路硬化、道路拓宽的里程数以及每千米的费用,然后表示出今年6月起道路硬化、道路拓宽的经费及里程数,根据投入比2017年增加10%,列方程进行求解即可得.【详解】(1)设道路硬化的里程数是x千米,则由题意得:x4(50-x),解不等式得:x40,答:道路硬化的里程数至少是40千米;(2)由题意得:2017年:道路硬化经费为:13万/千米,里程为:30km道路拓宽经费为:26万/
19、千米,里程为:15km今年6月起:道路硬化经费为:13(1+a%)万/千米,里程数:40(1+5a%)km,道路拓宽经费为:26(1+5a%)万/千米,里程数:10(1+8a%)km,又政府投入费用为:780(1+10a%)万元,列方程:13(1+a%)40(1+5a%)+26(1+5a%)10(1+8a%)=780(1+10a%),令a%=t,方程可整理为:13(1+t)40(1+5t)+26(1+5t)10(1+8t)=780(1+10t),520(1+t)(1+5t)+260(1+5t)(1+8t)=780(1+10t),化简得:,2(1+t)(1+5t)+(1+5t)(1+8t)=3
20、(1+10t),10-t=0,t(10t-1)=0, (舍去), ,综上所述: a = 10,答:a的值为10.【考点】本题考查一元一次不等式的应用,一元二次方程的应用,解决本题的关键是将道路硬化,道路拓宽的里程数及每千米需要的经费求出.3、10万人、300元【解析】【分析】设门票价格为x元,每周旅游人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解【详解】解:设门票价格为x元,每周旅游人数为y万人,每周旅游人数与票价之间存在一次函数关系,设一次函数为ykxb,则有,解得:,由题意得:,解得100,300当x
21、100时,y30;当x300时,y10既要控制人数又要保证收入,每周应限定旅游人数是10万人,门票价格应是300元【考点】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键4、10【解析】先设减少x台生产线,求出x的取值范围,接下来通过相等关系列出方程求解即可【详解】解:设减少x台生产线8020=16,即 解得:,(舍去),所以应减少10条生产线【考点】本题主要考查了一元二次方程的应用,解决本题的关键是读懂题意,找到相等关系,列出方程,同时要注意自变量的取值范围即可5、 (1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,;(2)(2),(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-1,【考点】本题考查了解一元二次方程,解决问题的关键是把方程化成一般形式,用分解因式的方法解答
Copyright@ 2020-2024 m.ketangku.com网站版权所有