1、九年级数学上册第二十一章一元二次方程专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、元旦当天,小明将收到的一条微信,发送给若干人,每个收到微信的人又给相同数量的人转发了这条微信,此时收到这条微信的
2、人共有157人,则小明给多少人发了微信()A10B11C12D132、一元二次方程的二次项系数、一次项系数分别是A3,B3,1C,1D3,63、不论x、y为什么实数,代数式的值()A可为任何实数B不小于7C不小于2D可能为负数4、一元二次方程,配方后可形为()ABCD5、元二次方程2x22x10的根的情况为()A有两个相等的实数根B有两个不相等的实数根C只有一个实数根D没有实数根6、若实数满足,则的值是( )A1B-3或1C-3D-1或37、已知关于x的一元二次方程x2+2x+m2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A6B5C4D38、已知是关
3、于的一元二次方程的一个实数根,则实数的值是()A0B1C3D19、设方程的两根分别是,则的值为()A3BCD10、若关于x的一元二次方程(k2)x22kx+k6有实数根,则k的取值范围为()A且k2Bk0且k2CDk0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一元二次方程ax2+bx+c=0(a0)有一个根为-1,则a-b+c=_2、方程的根是_3、关于x的一元二次方程的两实数根,满足,则的值是_4、关于x的方程有两个实数根且则_5、已知方程x23x10的根是x1和x2,则x1x2x1x2_三、解答题(5小题,每小题10分,共计50分)1、判断2、5、-4是不
4、是一元二次方程的根2、解下列方程:(1);(2)3、阅读下面的解题过程,求的最小值解:=,而,即最小值是0;的最小值是5依照上面解答过程,(1)求的最小值;(2)求的最大值4、已知关于x的一元二次方程有两个实数根(1)求k的取值范围;(2)若,求k的值5、去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等求该商店去年8、9月份营业额的月增长率-参考答案-一、单
5、选题1、C【解析】【分析】设小明发短信给x个人,根据每人只转发一次可得第一次转发共有(x+1)人收到了短信,第二次转发有(1+x+x2)人收到了短信,由题意可得方程人收到了短信=157,再解方程即可【详解】解:设小明发短信给x个人,由题意得:1+x+x2=157,解得:x1=12,x2=-13(不合题意舍去),答:小明发短信给12个人,故选:C【考点】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程2、A【解析】【分析】根据一元二次方程的定义解答【详解】3x26x+1=0的二次项系数是3,一次项系数是6,常数项是1.故答案选A.【考点】本题考查的知识点是一元
6、二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.3、C【解析】【分析】要把代数式进行拆分重组凑完全平方式,来判断其值的范围具体如下:【详解】(x22x1)(y24y4)2(x1)2(y2)22,(x1)20,(y2)20,(x1)2(y2)222,2故选:C【考点】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围要求掌握完全平方公式,并会熟练运用4、A【解析】【分析】把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可【详解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18故选:A【考点】本题考查
7、了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法5、B【解析】【分析】根据方程的系数结合根的判别式,即可得出120,进而即可得出方程2x22x10有两个不相等的实数根【详解】a2,b2,c1,b24ac(2)242(1)120,方程有两个不相等的实数根故选B【考点】本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键6、A【解析】【分析】设x2-3x=y将y代入原方程得到关于y的一元二次方程y2+2y-3=0即可,解这个方程求出y的值,然后利用根的判别式检验即可.【详解】设x2-3x=y将y代入原
8、方程,得y2+2y-3=0,解之得,y=1或y=-3当y=1时,x2-3x=1,=b2-4ac=(-3)2-41(-1)=9+4=130,有两个不相等的实数根,当y=-3时,x2-3x=-3,=b2-4ac=(-3)2-413=9=120,无解故y=1,即x2-3x=1故选A【考点】本题考查了换元法解一元二次方程及一元二次方程根的判别式,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.7、
9、B【解析】【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可.【详解】关于x的一元二次方程x2+2x+m2=0有两个实数根,=,解得:,又m为正整数,m=1或2或3,(1)当m=1时,原方程为x2+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求;(2)当m=2时,原方程为x2+2x=0,此时方程的两根分别为0和-2,符合题中要求;(3)当m=3时,原方程为x2+2x+1=0,此时方程的两根都为1,符合题中要求; m=2或m=3符合题意,m的所有符合题意的正整数取值的和为:2+3=5.故选B.【考点】读懂题意,熟知“在一元二次方程中,若方程有两个实数根
10、,则=”是解答本题的关键.8、B【解析】【分析】把x代入方程就得到一个关于m的方程,就可以求出m的值【详解】解:根据题意得,解得;故选:B【考点】本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根9、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也
11、可以通过韦达定理提升解题效率10、A【解析】【分析】根据二次项系数非零及根的判别式0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围【详解】解:关于x的方程(k2)x22kx+k6有两个实数根, ,解得:且k2,故选:A【考点】本题考查了一元二次议程的定义及根的判别式,解题的关键是对定义的掌握及根的判别式的应用二、填空题1、0【解析】【分析】根据一元二次方程的解的定义,将x=-1代入关于x的一元二次方程ax2+bx+c=0(a0)即可求得a-b+c的值【详解】解:关于x的一元二次方程ax2+bx+c=0(a0)的一个根为-1,x=-1满足关于x的一元二次方程ax2+bx+c=0(a
12、0),即a-b+c=0故答案是:0【考点】本题考查的是一元二次方程的根即方程的解的定义一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立2、【解析】【分析】根据题意得出配方得出,开方得出:,即可求解得出根【详解】解:配方得出,故答案为:【考点】本题考查了运用配方法求解二次方程的根的问题,难度很小,很容易做出,本题属于基础题3、32【解析】【分析】由题意得b2-4ac0,求出m0,再根据根与系数的关系,得m=2,最后把化简为(x1x2)2+2(x1+x2)2-4x1.x2+4,即可得答案【详解】解:由题意得b2-4ac=(2m)2-4
13、(m2-m)0,m0,关于x的一元二次方程x2+2mx+m2-m=0的两实数根x1,x2,x1x2=2,x1+x2=-2m,x1x2=m2-m=2,m2-m-2=0,解得:m=2或m=-1(舍去),x1+x2=-4, =(x1x2)2+2(x1+x2)2-4x1.x2+4,=22+2(-4)2-42+4=32【考点】本题考查了根据根与系数的关系,解题的关键是掌握x1+x2= ,x1x2=4、3【解析】【分析】先根据一元二次方程的根与系数的关系可得,再根据可得一个关于的方程,解方程即可得的值【详解】解:由题意得:,化成整式方程为,解得或,经检验,是所列分式方程的增根,是所列分式方程的根,故答案为
14、:3【考点】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键5、2【解析】【分析】根据根与系数的关系可得出x1+x23、x1x21,将其代入x1+x2x1x2中即可求出结论【详解】解:方程x23x10的两个实数根为x1、x2,x1x23、x1 x21,x1x2x1x2312,故答案为:2【考点】本题考查了根与系数的关系,一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x2三、解答题1、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行验证即可.【详解】解:将x=2代入可得
15、:6=6,故x=2是该一元二次方程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【考点】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.2、 (1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,;(2)(2),(x-3)(x+1)=0,x-3=0,x+1=0,x=
16、3或x=-1,【考点】本题考查了解一元二次方程,解决问题的关键是把方程化成一般形式,用分解因式的方法解答3、(1)2019;(2)5【解析】【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可;(2)利用完全平方公式把原式变形,利用非负数的性质解答即可;【详解】(1),的最小值为2019;(2),的最大值是5.【考点】本题考查的是配方法的应用,掌握完全平方公式和偶次方的非负性是解题的关键4、 (1) ;(2) 【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可【详解】解:(1)由题意可知,整理得:,解得:,的取值范围是:故答案为
17、:(2)由题意得:,由韦达定理可知:,故有:,整理得:,解得:,又由(1)中可知,的值为故答案为:【考点】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根5、(1)504万元;(2)20%【解析】【分析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x,则十一黄金周的月营业额为350(1+x)2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解【详解】解:(1)第七天的营业额是45012%=54(万元),故这七天的总营业额是450+45012%=504(万元)答:该商店去年“十一黄金周”这七天的总营业额为504万元(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=2.2(不合题意,舍去)答:该商店去年8、9月份营业额的月增长率为20%【考点】本题考查了一元二次方程的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键