1、九年级数学上册第二十一章一元二次方程专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的一元二次方程x23x+10有两个不相等的实数根x1,x2,则x12+x22的值是()A7B7C2D2
2、2、下列方程中,关于x的一元二次方程是()A3x2yBxCx+1Dx2+2x33、如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长设剪去的小正方形边长是xcm,根据题意可列方程为()A10646x=32B(102x)(62x)=32C(10x)(6x)=32D1064x2=324、已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20Dx10,x205、x=是下列哪个一元二次方程的根()A3x2+5x+1=0B
3、3x25x+1=0C3x25x1=0D3x2+5x1=06、若a是关于x的方程3x2x1=0的一个根,则20216a22a的值是()A2023B2022C2020D20197、关于x的方程a2x2+(2a1)x+10,下列说法中正确的是()A当a时,方程的两根互为相反数B当a0时,方程的根是x1C若方程有实数根,则a0且aD若方程有实数根,则a8、若关于的方程是一元二次方程,则满足的条件是()ABCD9、若一元二次方程的两根为,则的值是()A4B2C1D210、下列方程:;是一元二次方程的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程- x=1的根是
4、_2、一元二次方程根的判别式的值为_3、若两个最简二次根式与是同类二次根式,则=_4、若分式的值为,则的值等于_.5、将两个关于x的一元二次方程整理成(,a、h、k均为常数)的形式,如果只有系数a不同,其余完全相同,我们就称这样的两个方程为“同源二次方程”已知关于x的一元二次方程()与方程是“同源二次方程”,且方程()有两个根为、,则b2c_,的最大值是_三、解答题(5小题,每小题10分,共计50分)1、去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额
5、为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等求该商店去年8、9月份营业额的月增长率2、商场某种商品平均每天可销售30件,每件盈利50元 为了尽快减少库存,商场决定采取适当的降价措施 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件设每件商品降价x元 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?3、已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若ABC的两边AB、AC的长是方程的两个实
6、数根,第三边BC的长为5当ABC是等腰三角形时,求k的值4、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.5、已知m是方程的一个根,试求的值.-参考答案-一、单选题1、B【解析】【分析】根据一元二次方程的根与系数的关系可得x1+x23,x1x21,再把代数式x12+x22化为,再整体代入求值即可.【详解】解:根据根与系数的关系得x1+x23,x1x21,所以x12+x22(x1+x2)22x1x232217故选:B【考点】本题考查的是一元二次方程的根与系数的关系,熟练的利用根与系数的关系求解代数式的值是解本题的关键.2、D【解析】【分析】只含有
7、一个未知数,且未知数的最高次数是2 的整式方程是一元二次方程,利用一元二次方程的定义对各选项进行判断【详解】解:A、方程3x2y含有2个未知数,所以A选项不符合题意; B、方程x,不是整式方程,所以B选项不符合题意; C、方程x+1是分式方程,所以C选项不符合题意; D、方程x2+2x3是一元二次方程,所以D选项符合题意 故选D【考点】本题主要考查了一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3、B【解析】【详解】分析:设剪去的小正方形边长是xcm,则纸盒底面的长为(102x)cm,宽为(62x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即
8、可得出关于x的一元二次方程,此题得解详解:设剪去的小正方形边长是xcm,则纸盒底面的长为(102x)cm,宽为(62x)cm,根据题意得:(102x)(62x)32故选B点睛:本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键4、A【解析】【分析】A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1x2=2,结论C错误;D、由x1x2=2,可得出x10,x20,结论D错误综上即可得出结论【详解】A=(a)241(2)=
9、a2+80,x1x2,结论A符合题意;B、x1、x2是关于x的方程x2ax2=0的两根,x1+x2=a,a的值不确定,B结论不一定正确,不符合题意;C、x1、x2是关于x的方程x2ax2=0的两根,x1x2=2,结论C错误,不符合题意;D、x1x2=2,x10,x20,结论D错误,不符合题意故选A【考点】本题考查了根的判别式以及根与系数的关系,牢记“当0时,方程有两个不相等的实数根”是解题的关键5、D【解析】【分析】根据一元二次方程的求根公式进行求解.【详解】一元二次方程的求根公式是,对四个选项一一代入求根公式,正确的是D.所以答案选D.【考点】本题的解题关键是掌握一元二次方程求根公式.6、D
10、【解析】【分析】先把a代入方程得到3a2-a=1,然后方程两边都乘以-2得-6a2+2a=-2,从而求出答案【详解】解:由题意得:3a2-a-1=0,3a2-a=1,-6a2+2a=-2,20216a22a =2021-2=2019故选:D【考点】本题考查的是逆用一元二次方程解的定义得出-6a2+2a的值,因此在解题时要重视解题思路的逆向分析7、D【解析】【分析】先讨论原方程是一元一次方程,还是一元二次方程,然后再根据a的取值范围解答即可【详解】解:若a0,则此方程是一元二次方程,由于方程有实数根,=(2a-1)2-4a2=-4a+10,a0且a,即A错误;若a=0,则原方程为-x+1=0,所
11、以方程有实数根为x=1,则B错误,C错误综上所述,当a时方程有实数根.故选D【考点】本题考查了一元一次方程和一元二次方程,掌握分类讨论思想是解答本题的关键8、C【解析】【分析】根据一元二次方程的概念可直接得出答案【详解】关于的方程是一元二次方程,故选:C【考点】本题主要考查一元二次方程的概念,掌握一元二次方程的概念是解题的关键9、A【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得,所以故选A【考点】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.10、D【解析】【分析】根据一元二次方程的定义进行判断【详解】该方程符合一元二次方程的定义;该方程中含有2个未知
12、数,不是一元二次方程;该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元二次方程的定义综上,一元二次方程故选:D【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2二、填空题1、【解析】【分析】先对已知方程进行变形然后结合二次方程即可求解【详解】解:方程整理得,两边平方得,即,解得或,根据二次根式的性质可得,所以原方程的根是故答案为:【考点】本题主要考察了二次根式的性质以及含有根式方程的一般解法二次根式的性质:,含有根式方程的一般解法:先移项,然后两边同时平方,再利用
13、一元二次方程的知识求解即可2、13【解析】【分析】根据一元二次方程根的判别式=b2-4ac即可求出值【详解】解:a=1,b=3,c=-1,=b2-4ac=9+4=13所以一元二次方程x2+3x-1=0根的判别式的值为13故答案为:13【考点】本题考查了根的判别式,解决本题的关键是熟记根的判别式3、-3【解析】【分析】根据同类二次根式的定义可得,由此求解即可【详解】解:两个最简二次根式与是同类二次根式,或,两个根式都是最简根式,时,不符合题意,当a=3时,二次根式有意义且符合题意,故答案为-3【考点】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最
14、简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式4、2【解析】【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0【详解】解:根据题意:x2-x-2=0,且x2+2x+10解x2-x-2=0,解得x=2或x=-1当x=2时,分母x2+2x+1=90,分式的值为0;当x=-1时,分母x2+2x+1=0,分式没有意义所以x=2故填2.5、 4; -3【解析】【分析】利用()与方程是“同源二次方程”得出,即可求出;利用一元二次方程根与系数的关系可得,进而得出,设(),得,根据方程有正数解可知,求出t的取值范围即可求出的最大值【详解】解:根据新的定义可知,方程()可变形为
15、,展开,可得,;,方程()有两个根为、,且,设(),得,方程有正数解,解得,即,故答案为:4,-3【考点】本题考查新定义、一元二次方程根与系数的关系以及根的判别式,由根与系数的关系得到是解题的关键三、解答题1、(1)504万元;(2)20%【解析】【分析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x,则十一黄金周的月营业额为350(1+x)2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解【详解】解:(1)第七天的营业额是45012%=54(万元),故这七天的总营业额是450+450
16、12%=504(万元)答:该商店去年“十一黄金周”这七天的总营业额为504万元(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=2.2(不合题意,舍去)答:该商店去年8、9月份营业额的月增长率为20%【考点】本题考查了一元二次方程的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键2、(1) 2x,(2)每件商品降价20元,商场日盈利可达2100元【解析】【详解】(1) 2x,(2)解:由题意,得(302x)(50x)2 100解之得x115,x220该商场为尽快减少库存,降价越多越吸引顾客x20答:每件商品降价
17、20元,商场日盈利可达2 100元3、(1)详见解析(2)或【解析】【分析】(1)先计算出=1,然后根据判别式的意义即可得到结论;(2)先利用公式法求出方程的解为x1=k,x2=k+1,然后分类讨论:AB=k,AC=k+1,当AB=BC或AC=BC时ABC为等腰三角形,然后求出k的值【详解】(1)证明:=(2k+1)2-4(k2+k)=10,方程有两个不相等的实数根;(2)解:一元二次方程x2-(2k+1)x+k2+k=0的解为x=,即x1=k,x2=k+1,kk+1,ABAC当AB=k,AC=k+1,且AB=BC时,ABC是等腰三角形,则k=5;当AB=k,AC=k+1,且AC=BC时,AB
18、C是等腰三角形,则k+1=5,解得k=4,所以k的值为5或4【考点】本题考查了:1根的判别式;2解一元二次方程;3三角形三边关系;4等腰三角形的性质4、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程5、2015【解析】【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算【详解】解:m是方程的一个根,代入即得.或.【考点】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单.