1、京改版八年级数学上册第十章分式达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的方程有增根,则m的值为()A2B1C0D2、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司
2、投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件件,根据题意可列方程为()ABCD3、已知关于的分式方程的解为正数,则的取值范围为()AB且CD且4、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同若设乙工人每小时搬运x件电子产品,可列方程为ABCD5、若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m6、若数使关于的分式方程的解为正数,则的取值正确
3、的是()ABCD7、已知x3是分式方程的解,那么实数k的值为()A1B0C1D28、方程的解为()Ax=1Bx=0Cx=Dx=19、甲、乙两人分别从距目的地6km和10km的两地同时出发甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地,求甲、乙的速度若设甲的速度为3xkm/h,则可列方程为()ABCD10、的结果是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、化简:_2、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_3、计算=_4、已知,则代数式的值是_.5、
4、化简:_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:(1+),请从4,3,0,1中选一个合适的数作为a的值代入求值2、解分式方程:3、解方程:4、解分式方程:(1);(2)5、观察下列等式,探究其中的规律:+1,+,+,+,(1)按以上规律写出第个等式:_;(2)猜想并写出第n个等式:_;(3)请证明猜想的正确性-参考答案-一、单选题1、B【解析】【分析】先通过去分母把分式方程化为整式方程,再把增根代入整式方程,求出参数m,即可【详解】解:把原方程去分母得:,原分式方程有增根:x=1,即:m=1,故选B【考点】本题主要考查分式方程增根的意义,理解使分式方程的分母为零的根,
5、是分式方程的增根,是解题的关键2、D【解析】【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:,故选:D【考点】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键3、D【解析】【分析】解分式方程用k表示出x,根据解为正数及分式有意义的条件得到关于k的不等式组,解不等式组即可得到答案【详解】通分得:,x=2-k
6、,的解为正数,且分式有意义,解得:且,故选:D【考点】本题考查分式方程与不等式的综合应用,解分式方程得到关于k的不等式组是解题关键,注意分式有意义的条件,避免漏解4、C【解析】【分析】乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,根据甲的工效乙的工效,列出方程即可【详解】乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,依题意得:,故选C【考点】本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键5、B【解析】【分析】先去分母解方程,根据方程的解为正数列不等式即可【详解】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x
7、=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故选:B【考点】本题考查含参数的分式方程解法,不等式,分式有意义条件,解题的关键是掌握含参数的分式方程解法,不等式,分式有意义条件6、A【解析】【分析】表示出分式方程的解,由解为正数确定出a的范围即可【详解】解:分式方程整理得:,去分母得:2a4x4,解得:x,由分式方程的解为正数,得到0,且1,7、D【解析】【详解】解:将x=3代入,得:,解得:k=2,故选D8、D【解析】【详解】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:
8、去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验9、D【解析】【分析】求的是速度,路程明显,一定是根据时间来列等量关系,本题的关键描述语是:甲比乙提前20分钟到达目的地等量关系为:乙走10千米用的时间-甲走6千米用的时间=h,解题时注意单位换算【详解】解:设甲的速度为,则乙的速度为根据题意,得故选:D【考点】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键10、B【解析】【分析】首先把每一项因式分解,然后根据分式的混合运算法则求解即可【详解】=故选:B【考点】
9、此题考查了分式的混合运算,解题的关键是先对每一项因式分解,然后再根据分式的混合运算法则求解二、填空题1、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案【详解】解:原式=1故答案为:1【考点】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型2、 【解析】【分析】(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;(2),解得,故答案为:【考点】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,
10、列出相应的代数式及分式方程及求出方程的解3、-2【解析】【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=-2,故答案为:-2【考点】本题考查了分式的除法,熟练掌握运算法则是解本题的关键4、1【解析】【分析】将化简得到,再代入代数式,即可解答.【详解】 ,则, 将代入,得: 故答案为1【考点】本题考查了分式的化简求值,本题主要利用整体思想,难度较大,找出x-y与xy的关系是解题关键.5、【解析】【分析】根据分式的运算法则化简,即可求解【详解】故答案为:【考点】此题主要考查分式的混合运算,解题的关键是熟知其运算法则三、解答题1、,5【解析】【分析】先对分式进行化简,然后根据分式有意
11、义的条件选择一个合适的值代入求解即可【详解】解:原式=,a(a+3)0,a+40,a4,3,0,a1,当a1时,原式【考点】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键2、【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解【详解】解:去分母得,解得,经检验,是原方程的解所以,原方程的解为:【考点】本题主要考查了分式方程的解法解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根3、x3【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:方程
12、的两边同乘x1,得:,解这个方程,得:x3,检验,把x3代入x13120,原方程的解是x3【考点】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根4、(1)无解;(2)无解【解析】【分析】(1)方程两边乘去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解(2)方程两边乘去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】(1)方程两边乘,得,解得,检验:当时,因此不是原分式方程的解,所以,原分式方程无解;(2)方程两边乘,得,解得,检验:当时, 因此不是原分式方程的解,所以,
13、原分式方程无解【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验5、(1)+;(2)+;(3)证明见解析【解析】【分析】(1)仔细观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,据此进一步整理即可得出答案;(2)根据(1)中的规律直接进行归纳总结即可;(3)利用分式的运算法则进行计算验证即可.【详解】(1)观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,第个等式为:+,故答案为:+;(2)根据(1)中规律总结归纳可得:+,故答案为:+;(3)证明:对等式左边进行运算可得:+=,等式右边,左边右边,+成立【考点】本题主要考查了分式运算中数字的变化规律,根据题意正确找出相应的规律是解题关键.
Copyright@ 2020-2024 m.ketangku.com网站版权所有