1、京改版八年级数学上册第十章分式单元测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x的方程有正整数解,且关于x的不等式组的解集为,则符合条件的所有整数a之和为()A4B3C2D12、甲、乙两人
2、骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD3、已知,则分式与的大小关系是()ABCD不能确定4、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件件,根据题意可列方程为()ABCD
3、5、计算的结果是( )ABCD6、计算,则x的值是A3B1C0D3或07、若关于的不等式组有解,且使关于的分式方程的解为非负数则满足条件的所有整数的和为()A-9B-8C-5D-48、已知,当时,则的值是()ABCD9、下列运算中,错误的是()ABCD10、下列哪个是分式方程()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:(3)1+(4)0_2、方程的解为_3、方程的解是_4、_5、计算:(1)_;(2)_三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)(2)2、解方程:3、某糕点加工点受资金和原料保质期等因素影响,在购买主要原料面包粉
4、和蛋糕粉时需分次购买下表是该店最近三次购进原料的数量与总金额,其中前两次是按原价购买,第三次享受了优惠第一次第二次第三次面包粉(袋)235蛋糕粉(袋)458总金额(元)520700912(1)第三次购买的总金额比按原价购买节省了多少钱?(2)该店第四次购买原料时,按照第三次购买的经验,预算912元,仍需购买5袋面包粉和8袋蛋糕粉在接洽的过程中,发现优惠方式又发生了变化,相较于原价,每袋蛋糕粉降低的价格是每袋面包粉降低的价格的两倍,这时用576元能够买到面包粉的袋数是蛋糕粉袋数的预算够吗?4、今年春节期间第二十四届冬奥会在我国成功举办,吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱某商
5、店第一次用3000元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3000元购进的数量比第一次少了10件(1)求第一次购进的“冰墩墩”玩具每件的进价;(2)若两次购进的“冰墩墩”玩具每件售价均为70元,且全部售完,求两次的总利润5、计算:-参考答案-一、单选题1、C【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正整数求出的范围,再由不等式组的解集确定出的范围,进而求出的具体范围,确定出整数的值,求出之和即可【详解】解:分式方程去分母得:,解得:,由分式方程的解为正整数,得到,即,不等式,整理得:,由不等式的解集
6、为,得到,即,的范围是,且是整数,的值为,0, 2,3,4,把代入,得:,即,不符合题意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意;把代入,得:,即,不符合题意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意;符合条件的整数取值为,3,之和为2,故选:C【考点】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键2、D【解析】【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30
7、千米,甲走34千米,根据时间相等,得,故选D【考点】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键3、A【解析】【分析】将两个式子作差,利用分式的减法法则化简,即可求解【详解】解:,故选:A【考点】本题考查分式的大小比较,掌握作差法是解题的关键4、D【解析】【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得
8、:,故选:D【考点】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键5、A【解析】【分析】直接利用分式的加减运算法则计算得出答案【详解】原式,故选:A【考点】本题考查分式的加减运算法则,比较基础6、D【解析】【分析】根据实数的性质分类讨论即可求解【详解】当x=0,x-20时,即x=0;当x-2=1时,即x=3,故选D【考点】此题主要考查实数的性质,解题的关键是熟知负指数幂的运算法则7、A【解析】【分析】先求不等式组的解集,根据不等式组有解,可得,然后再解出分式方程,再根据分式方程的解为非负数,可得,即可求解【详解】解:,解不等式,得:,解不等式,得:,不等式组有解
9、,解得:,去分母得:,分式方程的解为非负数,且不等于2,即且,且满足条件的所有整数有-5、-4、-3、-2、0、1、2、3,满足条件的所有整数的和故选:B【考点】本题主要考查了解一元一次不等式组和分式方程,熟练掌握解一元一次不等式组和分式方程的基本步骤是解题的关键8、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口9、D【解析】【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变据此作答【详解】解:
10、A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、,故D错误故选D【考点】本题考查了分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为010、B【解析】【分析】根据分式方程的定义对各选项进行逐一分析即可【详解】解:,是整式方程,故此选项不符合题意;,是分式方程,故此选项符合题意;,是整式方程,故此选项不符合题意;,是整式方程,故此选项不符合题意【考点】本题考
11、查的是分式方程的定义,熟知分母中含有未知数的方程叫做分式方程是解答此题的关键二、填空题1、【解析】【分析】根据负整数指数幂和零次幂求解即可【详解】解:原式+1,故答案为:【考点】本题考查了负整数指数幂和零次幂,正确的计算是解题的关键2、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可【详解】解:故答案为:【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键3、x1【解析】【分析】原方程去分母得到整式方程,求解整式方程,最后检验即可【详解】解:,1,方程两边都乘2x1,得2x2x1,解得:x
12、1,检验:当x1时,2x10,所以x1是原方程的解,即原方程的解是x1,故答案为:x1【考点】本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验4、0【解析】【分析】先根据平方差公式通分,再加减计算即可【详解】原式故答案为:0【考点】本题考查了分式的加减法,熟悉掌握通分、约分法则是解题的关键5、 #0.5 【解析】【分析】(1)由负整数指数幂的运算法则计算即可(2)由零指数幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相
13、除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式三、解答题1、(1);(2)无解【解析】【分析】(1)先通分,把分母变为,再去分母,求出解,最后检验;(2)先通分,把分母变为,再去分母,求出解,最后检验【详解】解:(1),经检验是原方程的解;(2),经检验是增根,原方程无解【考点】本题考查解分式方程,解题的关键是掌握解分式方程的方法,需要注意结果要检验2、【解析】【分析】方程两边同时乘以(3x1),把分式方程化为整式方程,求出整式方程的解后再检验即得结果【详解】解:方程两边同时乘以(3x1),约去分母得:,解这个方程,得,经检验:是原方程的解,原方程的解为【考点】本题考查了分式方程的
14、解法,属于基础题型,熟练掌握解分式方程的方法是关键3、 (1)节省228元(2)预算不足【解析】【分析】(1)根据第一次和第二次购买的数量和总金额列出方程,分别求出面包粉和蛋糕粉的单价,再计算出不打折的总价减去折后总价即为节省的钱;(2)根据题意列出方程求出降价后面包粉和蛋糕粉的单价,再计算出买5袋面包粉和8袋蛋糕粉的总价,然后与预算进行比较(1)解:设每袋面包粉x元,每袋蛋糕粉y元依题意得,解得(元)答:节省228元(2)解:设每袋面包粉降价m元,则每袋蛋糕粉降价2m元.解得m=4经检验,m=4符合题意故第四次购买时,面包粉每袋96元,蛋糕粉每袋72元,预算不足答:预算不够【考点】本题主要考
15、查了二元一次方程组与实际问题和分式方程与实际问题,熟练运用二元一次方程组解决实际问题和分式方程解决实际问题是解答本题的关键4、 (1)第一次购进的“冰墩墩”玩具每件的进价为50元(2)两次的总利润为1700元【解析】【分析】(1)设第一次购进的“冰墩墩”玩具每件的进价为x元,则第二次每件的进价,根据题意列方程求解即可;(2)根据总利润=销售额-成本计算即可(1)解:设第一次购进的“冰墩墩”玩具每件的进价为x元,则第二次每件的进价为元,依题意得:,解得:,经检验:是方程的解,且符合题意,答:第一次购进的“冰墩墩”玩具每件的进价为50元(2)解:由题意可得(元),答:两次的总利润为1700元【考点】本题主要考查了分式方程的应用,理解题意列出正确方程是解题关键5、1【解析】【分析】直接利用分式的加减运算法则计算即可【详解】解:,【考点】本题主要考查了分式的加减运算,解题的关键是正确掌握运算法则