1、京改版八年级数学上册第十二章三角形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D12、如图,在ABC中,DE
2、是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D803、如图,把沿线段折叠,使点落在点处;若,则的度数为()ABCD4、如图,的角平分线交于点,若,则的度数()ABCD5、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里6、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD7、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4
3、D13,12,58、如图,与交于点,则的度数为()ABCD9、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或610、给出下列命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平分,的延长线交于点,若,则的度数为_2、三角形三边长分别为3,则a的取值范围是_3、如图,在中,的垂直平分线分别交、于点E、F若是等边三角形,则_4、如图,将一个长方形纸片沿折叠,使C点
4、与A点重合,若,则线段的长是_5、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点,分别是、边上的点,与相交于点,求证:是等腰三角形2、如图,某港口位于东西方向的海岸线上“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里它们离开港口一个半小时后分别位于点Q,R处,且相距30海里如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?3、如图,已知AOB,作AOB的平分线OC,将直角尺DEMN如图所示摆放,使EM边与OB边重合,顶点D落
5、在OA边上,DN边与OC交于点P(1)猜想DOP是三角形;(2)补全下面证明过程:OC平分AOBDNEM 4、已知:如图,在中,为的中点,、分别在、上,且于.求证:.5、如图,在ABC中,B=75,ADBC,C=CAD,求C,BAC的度数-参考答案-一、单选题1、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证
6、明线段相等,角相等.2、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键3、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求【详解】解:沿线段折叠,使点落在点处, , , , , ,故选:C【考点】本题考查了全等
7、三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决4、A【解析】【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到AABFAFBPPCFPFC180推出PPCFAABF,根据三角形的外角性质得到PPBEPED,推出PPBEPCDD,根据PB、PC是角平分线得到PCFPCD,ABFPBE,推出2PAD,代入即可求出P法二:延长DC,与AB交于点E设AC与BP相交于O,则AOBPOC,可得PACDAABD,代入计算即可【详解】解:法一:延长PC交BD于E,设AC、PB交于F,AABFAFBPP
8、CFPFC180,AFBPFC,PPCFAABF,PPBEPED,PEDPCDD,PPBEPCDD,2PPCFPBEADABFPCD,PB、PC是角平分线PCFPCD,ABFPBE,2PADA48,D10,P19法二:延长DC,与AB交于点EACD是ACE的外角,A48,ACDAAEC48AECAEC是BDE的外角,AECABDDABD10,ACD48AEC48ABD10,整理得ACDABD58设AC与BP相交于O,则AOBPOC,PACDAABD,即P48(ACDABD)19故选A.【考点】本题主要考查对三角形的内角和定理,三角形的外角性质,对顶角的性质,角平分线的性质等知识点的理解和掌握,
9、能熟练地运用这些性质进行计算是解此题的关键5、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大6、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行
10、线的性质和三角形的内角和是解题的关键7、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形8、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记
11、平行线的性质是解题关键9、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答10、B【解析】【详解】解:等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边
12、不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B二、填空题1、【解析】【分析】如图,连接,延长与交于点利用等腰三角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案【详解】解:如图,连接,延长与交于点 平分, 是的垂直平分线, 故答案为: 【考点】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键2、【解析】【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围【详解】三角形的三边长分别为3,4,即,故答案为【考点】本题考查
13、了三角形的三边关系,解题的关键是熟练掌握三角形三边关系3、30【解析】【分析】根据垂直平分线的性质得到B=BCF,再利用等边三角形的性质得到AFC=60,从而可得B.【详解】解:EF垂直平分BC,BF=CF,B=BCF,ACF为等边三角形,AFC=60,B=BCF=30.故答案为:30.【考点】本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到B=BCF.4、【解析】【分析】根据折叠的性质和勾股定理即可求得【详解】解:长方形纸片,根据折叠的性质可得,设,根据勾股定理,即,解得,故答案为:【考点】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关
14、键5、4【解析】【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得出答案【详解】延长AC至E,使CE=BM,连接DEBD=CD,且BDC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=ACB=70,MBD=ABC+DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=E
15、N=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键三、解答题1、见解析【解析】【分析】先证明,得到,进而得到,故可求解【详解】证明:在和中又即是等腰三角形【考点】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质2、北偏西45(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海天”号航行方向【详解】解:由题意可得:RP=18海里,PQ
16、=24海里,QR=30海里,182+242=302,RPQ是直角三角形,RPQ=90,“远航”号沿东北方向航行,即沿北偏东45方向航行,RPS=45,“海天”号沿北偏西45(或西北)方向航行【考点】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大3、等腰,DOP,BOP,DPO,BOP,DOP,DPO,OD,PD,见解析【解析】【分析】(1)三角形的种类有多种,从边和角的关系上看常见的有:等腰三角形、等边三角形、直角三角形、观察此三角形即可大体猜想出三角形的类型;(2)根据角平分线的性质和平行线的性质,求得DOPDP
17、O,即可判断三角形的形状【详解】解:(1)我们猜想DOP是等腰三角形;(2)补全下面证明过程:OC平分AOB,DOPBOP,DNEM,DPOBOP,DOPDPO,ODPD故答案为:等腰,DOP,BOP,DPO,BOP,DOP,DPO,OD,PD【考点】本题考查了角平分线的性质和平行线的性质及等腰三角形,解决本题的关键是掌握平行线的性质定理,找到相等的角4、详见解析【解析】【分析】通过倍长线段,将、转化到中,再证为直角三角形.【详解】延长至,使,连结、,又,.【考点】本题考查了全等三角形判定与性质,勾股定理,正确添加辅助线,熟练掌握相关知识是解题的关键.5、C=45;BAC=60【解析】【分析】在RtACD中,利用两锐角互余以及等腰三角形的性质求得C=45,在ABC中,利用三角形内角和定理即可求得BAC=60【详解】解:ADBC,ADC=90,在RtACD中,CAD+C=90,C=CAD,C=CAD=45,在ABC中,B=75,BAC=180BC=1807545=60【考点】本题考查了等腰三角形的性质,三角形内角和定理,熟记各图形的性质并准确识图是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有