1、京改版八年级数学上册第十二章三角形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D852、如图,与交于点,则的度数为()AB
2、CD3、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4个4、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形设直角三角形较长直角边长为a,较短直角边长为b若ab=8,大正方形的面积为25,则小正方形的边长为A9B6C4D35、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离
3、相等,则点是三个角平分线的交点A1B2C3D46、如图甲,直角三角形的三边a,b,c,满足的关系利用这个关系,探究下面的问题:如图乙,是腰长为1的等腰直角三角形,延长至,使,以为底,在外侧作等腰直角三角形,再延长至,使,以为底,在外侧作等腰直角三角形,按此规律作等腰直角三角形(,n为正整数),则的长及的面积分别是()A2,B4,C,D2,7、若等腰三角形的顶角是40,则它的底角是()A40B70C80D1008、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2
4、D29、如图,在四边形ABCD中,分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O若点O是AC的中点,则CD的长为()AB4C3D10、自新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一个等腰直角三角尺的两个顶点恰好落在笔记本的两条横线a,b上若,则_2、(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为_(2)已知的周长为24,于点D,若的周长为20,则AD的
5、长为_(3)已知等腰三角形的周长为24,腰长为x,则x的取值范围是_3、如图,当ABC,C,D满足条件_时,ABED4、如果三角形两条边分别为3和5,则周长L的取值范围是_5、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD中,C90,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30,DC,求EC的长.2、如图,在中,点,分别是、边上的点,与相交于点,求证:是等腰三
6、角形3、如图,已知,(1)求的长度;(2)求四边形的面积4、在中,BE,CD为的角平分线,BE,CD交于点F(1)求证:;(2)已知如图1,若,求CE的长;如图2,若,求的大小5、如图,BCAD,垂足为点C,A = 27,BED = 44 求:(1)B的度数;(2)BFD的度数-参考答案-一、单选题1、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,故选B【考点】本题考查垂直的性质,解题关键在于在证明2、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键3、B【解析
7、】【详解】分析:根据所给的4个条件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A+B+C=180,C=180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=180,解得C=36,A=B=72,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结
8、合三角形内角和是180确定出ABC的最大角的度数即可判断此时ABC是否是直角三角形了”.4、D【解析】【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长【详解】解:由题意可知:中间小正方形的边长为:,每一个直角三角形的面积为:,或(舍去),故选:D【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型5、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,
9、最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键6、A【解析】【分析】根据题意结合等腰直角三角形的性质,即可判断出的长,再进一步推出一般规律,利用规律求解的面积即可【详解】由题意可得:,为等腰直角三角形,且“直角三角形的三边a,b,c,满足的关系”,根据题意可
10、得:,总结出,归纳得出一般规律:,故选:A【考点】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键7、B【解析】【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数【详解】解:因为等腰三角形的两个底角相等,又因为顶角是40,所以其底角为70故选:B【考点】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等8、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作
11、图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质9、A【解析】【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出再根据ASA证明,那么,等量代换得到,利用线段的和差关系求出然后在直角中利用勾股定理求出CD的长【详解】解:如图,连接FC,则,在与中,在中,故选:A【考点】本题考查了作图基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中求出CF与DF是解题的关键10、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线
12、折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键二、填空题1、25【解析】【分析】求出3=25,根据平行线的性质可得出【详解】解:如图,ABC是等腰直角三角形,BAC=45,即 1=203=25 2=3=25故答案为:25【考点】此题主要考查了平行线的性质和等腰直角三角形的性质,熟练掌握蜀道难突然发觉解答此题的关键2、 4cm或8cm 8 【解析】【分析】(1)根据题意画出图
13、形,由题意得 ,即可得 ,又由等腰三角形的底边长为6cm,即可求得答案(2)由ABC的周长为24得到AB,BC的关系,由ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值(3)设底边长为y,再由三角形的三边关系即可得出答案【详解】(1)如图, ,BD是中线由题意得存在两种情况:, , 腰长为:4cm或8cm故答案为:4cm或8cm(2)ABC的周长为24, 的周长为20 故答案为:8(3)设底边长为y等腰三角形的周长为24,腰长为x ,即 解得 故答案为:【考点】本题考查了三角形的综合问题,掌握等腰三角形的性质、等腰三角形三线合一的性质、三
14、角形的周长定义、三角形的三边关系是解题的关键3、ABCCD【解析】【分析】延长CB交DE于F,根据三角形的一个外角等于与它不相邻的两个内角的和求出EFB=C+D,再根据同位角相等,两直线平行解答即可【详解】如图,延长CB交DE于F,则EFB=C+D,当ABC=EFB时,ABED,所以,当ABC=C+D时,ABED故答案为ABC=C+D【考点】本题考查了平行线的判定,作辅助线,把C、D转化为一个角的度数是解题的关键4、10L16【解析】【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案【详解】设第三边长为x,有两条边分别为3和5,5-3x5+3,解得2x8,2+3+5x
15、+3+58+3+5,周长L=x+3+5,10L16,故答案为: 10L16【考点】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键5、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,C
16、B=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质三、解答题1、(1)见解析;(2).【解析】【分析】(1)直接利用直角三角形的性质得出,再利用DEBC,得出23,进而得出答案;(2)利用已知得出在RtBCD中,360,得出DB的长,进而得出EC的长.【详解】(1
17、)证明:ADDB,点E为AB的中点,.12.DEBC,23.13.BD平分ABC.(2)解:ADDB,A30,160.3260.BCD90,430.CDE2+490.在RtBCD中,360,DB2.DEBE,160,DEDB2.【考点】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.2、见解析【解析】【分析】先证明,得到,进而得到,故可求解【详解】证明:在和中又即是等腰三角形【考点】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质3、(1)BD=15(2) 210m2.【解析】【分析】(1)根据勾股定理即可求出BD的长;(2)先根据勾股定
18、理的逆定理判断BDC是直角三角形,然后根据四边形ABCD的面积等于ABD和BDC的面积和即可得出答案【详解】解:(1)ABD=90,AB2+BD2=AD2,82+BD2=172,BD=15;(2)BD=15,DC=20,BC=25,BD2+DC2=BC2,BDC=90,四边形的面积=ABBD+CDBD=815+2015=210m2【考点】本题考查了勾股定理和勾股定理的逆定理的应用,根据勾股定理的逆定理判断出BDC是直角三角形是解决此题的关键4、(1)证明见解析;(2)2.5;(3)100【解析】【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC
19、上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,再由三角形内角和可求,进而可得【详解】解:(1)、分别是与的角平分线,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,在与中, ,(SAS), ,在与中,;,(3)如解(3)图,延长BA到P,使AP=FC,在与中, ,(SAS),又,又,【考点】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键5、(1)63;(2)107【解析】【分析】(1)根据垂直的定义可得,进而根据三角形内角和定理即可求得;(2)根据三角形的外角的性质即可求得【详解】解:(1) BCAD,A = 27,(2)BED = 44,【考点】本题考查了三角形的内角和定理与三角形的外角性质,掌握以上知识是解题的关键