1、京改版八年级数学上册第十二章三角形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形2、已知三角形的两边分别为1和4,
2、第三边长为整数 ,则该三角形的周长为()A7B8C9D103、如图,在中,过点作,交于点,若,则的长度为()ABCD4、如图,把沿线段折叠,使点落在点处;若,则的度数为()ABCD5、下列图形中,是轴对称图形的是()ABCD6、如图,已知ABC中,BD、CE分别是ABC的角平分线,BD与CE交于点O,如果设BACn(0n180),那么BOE的度数是()A90nB90nC45+nD180n7、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD8、如图
3、,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D19、如图,在中,的周长10,和的平分线交于点,过点作分别交、于、,则的长为()A10B6C4D不确定10、如图,将沿翻折,三个顶点恰好落在点处若,则的度数为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_2、如图,是一个中心对称图形,A为对称中心,若,则_,_3、在ABC中,ABc,ACb,BCa,当a、b、c满足_时,B=904、边长为6的等边三角形的面积是_5、如图,在四边形ABCD中,那么四边形ABCD的
4、面积是_三、解答题(5小题,每小题10分,共计50分)1、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM(1)若AE=5,求BF的长;(2)若AEC=90,DBF=CAE,求证:CD=FE2、平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,点在第一象限,连接交轴于点,连接(1)请通过计算说明;(2)求证;(3)请直接写出的长为 3、如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且连接(1)求证:;(2)如图,若,则的面积为_4、如图,已知在中,AD是BC边上的高,AE是的平分线,求证:5、如图,
5、已知ABDC,ACDB,BECE,求证:AEDE.-参考答案-一、单选题1、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答2、C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长【详解】设第三边为x,根据三角形的三边关系,得:4-1x4+1,即3x5,x为整数,x的值为4
6、三角形的周长为1+4+4=9故选C.【考点】此题考查了三角形的三边关系关键是正确确定第三边的取值范围3、B【解析】【分析】根据题意可求出,即推出AD=BD=1在中,利用含角的直角三角形的性质即可求出CD长【详解】,AB=AC,AD=BD=1,在中,BD=1故选:B【考点】本题考查等腰三角形的判定和性质、含角的直角三角形的性质掌握含角的直角三角形中,角所对的边等于斜边的一半是解答本题的关键4、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求【详解】解:沿线段折叠,使点落在点处, , , , , ,故选:C【考点】本题考查了全等三角形的性质及三角形内角
7、和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决5、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对
8、称轴6、A【解析】【分析】根据BD、CE分别是ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解【详解】解:BD、CE分别是ABC的角平分线,故答案选:A【考点】本题考查三角形的内角和定理和外角的性质涉及角平分线的性质三角形的内角和定理:三角形的内角和等于三角形的一个外角等于与它不相邻的两个内角之和7、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形
9、的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键8、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.9、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB和EO=EC,从而得出DE=DBEC,然后根据的周长即可求出AB.【详解】解:OBC=DOBBO
10、平分OBC=DBODOB=DBODO = DB同理可证:EO=ECDE=DOEO= DBEC,的周长10,ADAEDE=10ADAEDBEC =10ABAC=10AB=10AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.10、D【解析】【分析】根据翻折变换前后对应角不变,故B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+H
11、OG=360,HOD+EOF+HOG=A+B+C=180,1+2=360-180=180,1=40,2=140,故选:D【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOD+EOF+HOG=A+B+C=180是解题关键二、填空题1、【解析】【分析】根据折叠的性质和勾股定理即可求得【详解】解:长方形纸片,根据折叠的性质可得,设,根据勾股定理,即,解得,故答案为:【考点】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键2、 30 2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可【详解】解:A为对称中心,绕点A旋转能与重合,【考点】本题考
12、查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键3、a2+c2= b2【解析】【分析】根据勾股定理的逆定理可得到满足的条件,可得到答案【详解】解:a2+c2=b2时,ABC是以AC为斜边的直角三角形,当a、b、c满足a2+c2=b2时,B=90故答案为:a2+c2=b2【考点】本题主要考查勾股定理的逆定理,掌握当两边平方和等于第三边的平方时第三边所对的角为直角是解题的关键4、【解析】【分析】作出相应图形中,作,由三线合一性质解得DC=3,继而根据勾股定解得AD的长,最后根据三角形面积公式解题【详解】如图,在中,作,故答案为:【考点】本题考查等边三角形的性质、三线
13、合一性质、勾股定理、三角形面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键5、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出BDC是直角三角形,两个三角形面积相加即可【详解】解:连结BD,BD=6,BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,BDC=90,SABD=,SBDC=,四边形ABCD的面积是= SABD+ SBDC=+24故答案为:+24【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型三、解答题1、(1)BF=5;(2)见解析【解析】【分析】(1)证明AEMB
14、FM即可;(2)证明AECBFD,得到EC=FD,利用等式性质,得到CD=FE【详解】(1)BFAE,MFB=MEA,MBF=MAE,EM=FM,AEMBFM,AE=BF,AE=5,BF=5;(2)BFAE,MFB=MEA,AEC=90,MFB=90,BFD=90,BFD=AEC,DBF=CAE,AE=BF,AECBFD,EC=FD,EF+FC=FC+CD,CD=FE【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键2、(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)先根据点A坐标可得OA的长,再根据即可
15、得证;(2)如图(见解析),延长至点,使得,连接,先根据三角形全等的判定定理与性质可得,再根据直角三角形的性质和得出,然后根据三角形全等的判定定理与性质即可得证;(3)先由题(2)两个三角形全等可得,再根据平行线的性质得出,从而有,然后根据等腰三角形的定义(等角对等边)即可得【详解】(1),即;(2)如图,延长至点,使得,连接,轴,即;(3)由(2)已证,轴(等角对等边)故答案为:5【考点】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键3、(1)见解析;(2)【解析】【分析】(1)易证ADE=CDF,即可证
16、明ADECDF;(2)由(1)可得AE=CF,BE=AF,再根据DEF的面积=,即可解题【详解】(1)证明:AB=AC,D是BC中点,BAD=C=45,AD=BD=CD,ADE+ADF=90,ADF+CDF=90,ADE=CDF,在ADE和CDF中,ADECDF(ASA)(2)解:ADECDFAE=CF=5,BE=AF=12,AB=AC=17,DEF的面积=【考点】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ADECDF是解题的关键4、证明见解析.【解析】【详解】试题分析:根据三角形内角和定理以及AD是BC边上的高,求得BAD=90-B,再根据AE平分BAC,求得B
17、AE=BAC=(180-B-C)=90-B-C,最后根据DAE=BAE-BAD即可求解试题解析:AD是BC边上的高,BAD=90-BAE平分BAC,BAE=BAC=(180-B-C)=90-B-CDAE=BAE-BAD,DAE=(90-B-C)-(90-B)=B-C=(B-C)5、见解析【解析】【分析】利用SSS证明ABCDCB,根据全等三角形的性质可得ABC=DCB,再由SAS定理证明ABECED,即可证得AE=DE【详解】证明:在ABC和DCB中, ,ABCDCB(SSS)ABC=DCB在ABE和DCE中,ABEDCE(SAS)AE=DE【考点】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角
Copyright@ 2020-2024 m.ketangku.com网站版权所有