1、高考资源网() 您身边的高考专家高一数学选修11教案周次上课时间 月 日周课型新授课主备人使用人课题 3.3.3 函数的最大(小)值与导数教学目标1.使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;2.使学生掌握用导数求函数的极值及最值的方法和步骤.教学重点利用导数求函数的最大值和最小值的方法教学难点函数的最大值、最小值与函数的极大值和极小值的区别与联系课前准备多媒体课件一、【创设情境】我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质也就是说,如果是函数的极大(小)值点,那么在点附近找不到
2、比更大(小)的值但是,在解决实际问题或研究函数的性质时,我们更关心函数Z_X_X_K在某个区间上,哪个至最大,哪个值最小如果是函数的最大(小)值,那么不小(大)于函数在相应区间上的所有函数值二、【新课讲授】观察图中一个定义在闭区间上的函数的图象图中与是极小值,是极大值函数在上的最大值是,最小值是1.结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值说明:(1)如果在某一区间上函数的图像是一条连续不断的曲线,则称函数在这个区间上连续(可以不给学生讲)(2)给定函数的区间必须是闭区间,在开区间内连续的函数不一定有最大值与最小值如函数在内连续,但没有最大值与最小值
3、;(3)在闭区间上的每一点必须连续,即函数图像没有间断,(4)函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件(可以不给学生讲)2“最值”与“极值”的区别和联系(1)最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,
4、最值只要不在端点必定是极值3利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了一般地,求函数在上的最大值与最小值的步骤如下:(1)求在内的极值;(2)将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值三、典例分析例1求在的最大值与最小值 解: 由例4可知,在上,当时,有极小值,并且极小值为,又由于,因此,函数在的最大值是4,最小值是上述结论可以从函数在上的图象得到直观验证课堂练习1下列说法正确的是( )A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值2函数y=f(x)在区间a,b上的最大值是M,最小值是m,若M=m,则f(x) ( )A.等于0B.大于0 C.小于0D.以上都有可能四、【课堂小结】1函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;2函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;3闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值 4利用导数求函数的最值方法五、【书面作业】六、【板书设计】 七、【教后记】1.2.- 4 - 版权所有高考资源网