1、八年级数学上册第十一章实数和二次根式定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列哪一个选项中的等式不成立?()ABCD2、等于()A7BC1D3、在实数:3.14159,1.010 010
2、 001,中,无理数有()A1个B2个C3个D4个4、一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A1B-1C2D-25、下列算式正确的是()ABCD6、下列二次根式中,与是同类二次根式的是()ABCD7、估计的值应在()A1和2之间B2和3之间C3和4之间D4和5之间8、在四个实数,0,中,最小的实数是()AB0CD9、有下列说法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数都是无理数;无理数是含有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个10、定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:例
3、如:因为,所以,亦即;根据上述定义和运算法则,计算的结果为()A5B2C1D0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算的结果是_2、_3、观察下面的变化规律:,根据上面的规律计算:_4、若代数式在实数范围内有意义,则实数x的取值范围是_5、已知实数m,n满足,则m+2n的值为_三、解答题(5小题,每小题10分,共计50分)1、已知5x19的立方根是4,求2x7的平方根2、阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数因此,的小数部分不可能全部地写出来,但可以用来表示的小数部分理由:因为的整数部分是1,将这个数减去其整数部分,差就是小数部分
4、请解答:已知:的小数部分为,的小数部分为b,计算的值3、实数a在数轴上的对应点A的位置如图所示,b|a|2a|(1)求b的值;(2)已知b2的小数部分是m,8b的小数部分是n,求2m2n1的平方根4、已知|a|=3,b2=25,且a0,求ab的值.5、观察下列一组式的变形过程,然后回答问题:化简:,则,(1)请直接写出下列式子的值:;(2)请利用材料给出的结论,计算:的值;(3)请利用材料提供的方法,计算的值-参考答案-一、单选题1、B【解析】【分析】根据二次根式化简的方法计算,即可【详解】A,正确,不符合题意;B,故此选项错误,符合题意;C,正确,不符合题意;D,正确,不符合题意故答案选:B
5、【考点】本题考查了二次根式的化简,熟练掌握二次根式的概念以及化简方法,是解决本题的关键2、B【解析】【分析】根据二次根式的混合计算法则求解即可【详解】解:,故选B【考点】本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则3、B【解析】【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:,在实数:3.14159,1.010010001,中,无理数有1.010010001,共2个故选:B【考点】本题主要考查了无理数的定义,掌握无理数的定义是
6、解题的关键,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数4、B【解析】【分析】根据一个正数的两个平方根互为相反数得到关于a的一元一次方程,求解即可【详解】解:根据题意可得:,解得,故选:B【考点】本题考查了平方根的概念,正确理解一个正数的两个平方根的关系,求得a的值是关键5、D【解析】【分析】根据算术平方根的非负性,立方根的定义即可判断【详解】A、,故 A错误;B、,故B错误;C、,故C错误;D、,故D正确【考点】本题考查了算术平方根和立方根,掌握相关知识是解题的关键6、A【解析】【分析】先将各式化为最简二次根式,再利用同类二次根式定义
7、判断即可【详解】解:A、原式,符合题意;B、原式,不符合题意;C、原式,不符合题意;D、原式不能化简,不符合题意故选:A【考点】此题考查了同类二次根式,几个二次根式化为最简二次根式后,被开方数相同的即为同类二次根式7、B【解析】【详解】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】=,=,而,45,所以23,所以估计的值应在2和3之间,故选B.【考点】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.8、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A
8、【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小9、A【解析】【分析】根据无理数、分数的概念判断【详解】解:无限不循环小数是无理数,错误是有理数,错误是有理数,错误也是无理数,不含根号,错误是一个无理数,不是分数,错误故选:【考点】本题考查实数的概念,掌握无理数是无限不循环小数是求解本题的关键10、C【解析】【分析】根据新运算的定义和法则进行计算即可得【详解】解:原式,故选:C【考点】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键二、填空题1、 【解析】【详解】【分析】根据分式的加减法法则进行计算即可得答案【
9、详解】原式=,故答案为.【考点】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.2、6【解析】【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【考点】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键3、【解析】【分析】本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题【详解】由题干信息可抽象出一般规律:(均为奇数,且)故故答案:【考点】本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解4、【解析】【分析】根据二次根式有意义的条件即可求得数x的取值范围【详解】在实
10、数范围内有意义,解得故答案为:【考点】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键5、3【解析】【详解】|n2|0, ,解得:, m+2n=-1+4=3.故答案为3.点睛:(1)一个数的绝对值和算术平方根都是非负数;(2)两个非负数的和为0,则这两个数都为0.三、解答题1、【解析】【分析】由已知根据立方根的定义可得到5x+19=43,继而可求得x的值,进而可以求2x+7的平方根【详解】5x19的立方根是4,5x+19=43,即645x19,解得x=9,2x725,2x7的平方根为=5【考点】本题考查了立方根的定义,平方根的定义,是一个基础的问题,熟练掌握相关定义及求解方
11、法是解题的关键2、1【解析】【分析】先估算2+的大小,算出2+的整数部分,再求出小数部分a,同理求出5的小数部分b,再进行求解【详解】解:23,42+5,2+的整数部分为4,2+的小数部分a=2+-4=-3-225-35-的整数部分为2,5-的小数部分b=5-2=3-a+b=+3-=1【考点】此题主要考查实数的估算,解题的关键是先估算出的大小3、 (1)(2)【解析】【分析】(1)先判断2a3,再判断a-0,2a0,再化简绝对值,合并即可;(2)先求解 再求解的值,再求解2m2n1,最后求解平方根即可(1)解:2a3a-0,2a0b-aa-22(2)b2=,8b=8(2)=10, m=3,n=
12、106=42m2n1=26+821=32m2n1的平方根为【考点】本题考查的是实数与数轴,化简绝对值,无理数的小数部分的理解,平方根的含义,掌握以上基础知识是解本题的关键4、-8或2.【解析】【分析】根据题意,利用绝对值的意义及平方根定义求出a,b的值,代入原式计算即可得到结果【详解】|a|=3 a=3又a0a= -3b=25b=5当a= -3,b=5时 a-b= -3-5= -8当a= -3,b= -5时 a-b= -3-(-5)=2故答案为:-8或2.【考点】本题考查绝对值的意义和平方根的定义,熟练掌握它们的定义是解题的关键.5、(1)(或);(2)9;(3)【解析】【分析】(1)观察已知条件,利用分母有理化进行计算即可;(2)根据规律可得,再计算即可;(3)由规律可得再计算即可【详解】解:(1)(2)原式=(3)原式=【考点】本题考查了分母有理化和平方差公式的运用,找规律是解决此题的关键,注意有理化因式的确定