1、京改版七年级数学上册第三章简单的几何图形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x2y+z的值是()A1B4C7D92
2、、如图,已知线段上有三点,则图中共有线段( )A7条B8条C9条D10条3、如图所示,与不是同一个角的是()ABCD4、如图,下列各组角中,表示同一个角的是()A与B与C与D与5、下列说法中正确的个数为()射线OP和射线PO是同一条射线;连接两点的线段叫两点间的距离;两点确定一条直线;若AC=BC,则C是线段AB的中点A1个B2个C3个D4个6、如图,BOD118,COD是直角,OC平分AOB,则AOB的度数是()A48B56C60D327、观察下列图形,其中不是正方体的表面展开图的是()ABCD8、如图,如果把原来的弯曲河道改直,关于两地间河道长度的说法正确的是()A变长了B变短了C无变化D
3、是原来的2倍9、几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是()A笔尖在纸上移动划过的痕迹B长方形绕一边旋转一周形成的几何体C流星划过夜空留下的尾巴D汽车雨刷的转动扫过的区域10、如图,河道的同侧有两个村庄,计划铺设一条管道将河水引至两地,下面的四个方案中,管道长度最短的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直角中,则内部五个小直角三角形的周长为_.2、点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍点C在数轴上,M为线段OC的
4、中点(1)点B表示的数为_;(2)若线段,则线段OM的长为_3、如图,若OC、OD三等分,则_,_,_4、小美同学从地沿北偏西方向走到地,再从地向正南方向走到地,此时小美同学离地_5、如图,已知AOB90,射线OC在AOB内部,OD平分AOC,OE平分BOC,则DOE_三、解答题(5小题,每小题10分,共计50分)1、如图,AOB内有一点P 根据下列语句画图:(1)过点P作OB的垂线段,垂足为Q ;(2)过点P作线段PCOB交OA于点C,作线段PDOA交OB于点D ;(3)如果O = 40,那么DPQ = ;(4)比较PQ和PD的大小:PQ PD,依据是 2、【新知理解】如图,点在线段上,图中
5、共有三条线段、和,若其中有一条线段的长度是另外一条线段长度的2倍,则称点是线段的“奇点”(1)线段的中点_这条线段的“奇点”(填“是”或“不是”)【初步应用】(2)如图,若,点是线段的奇点,则;【解决问题】(3)如图,已知动点从点出发,以速度沿向点匀速移动:点从点出发,以的速度沿向点匀速移动,点、同时出发,当其中一点到达终点时,运动停止,设移动的时间为,请直接写出为何值时,、三点中其中一点恰好是另外两点为端点的线段的奇点?3、如图所示,说出下列几何体截面(阴影部分)的形状4、如图所示,线段被点M分成2:3两段,且被点N分成4:1两段,已知厘米,求的长5、如图,已知数轴上有、三点,点为原点,点、
6、点在原点的右侧,点在原点左侧,点表示的数为,点表示的数为,且与满足,(1)直接写出、的值,_,_;(2)动点从点出发,以每秒6个单位的速度沿数轴的正方向运动,同时动点从点出发,以每秒3个单位的速度沿数轴的正方向运动,设运动时间为秒,请用含的式子表示线段的长度;(3)在(2)的条件下,若点为的中点,点为的中点,求为何值时,满足-参考答案-一、单选题1、A【解析】【分析】将展开图还原成立体图,再结合相反数的概念即可求解【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“8”是相对面,“y”与“2”是相对面,“z”与“3”是相对面,相对面上所标的两个数互为相反数,x8,y2,z
7、3,x2y+z82231故答案是:A【考点】本题主要考察正方体展开图和空间想象能力、相反数的概念,属于基础题型,难度不大解题的关键是空间想象能力,即将展开图还原成立体图形注意:正方体的表面展开图,相对的面之间一定相隔一个正方形2、D【解析】略3、D【解析】【分析】根据角的概念和角的表示方法,依题意求得答案【详解】解:除了,其他三种表示方法表示的都是同一个角故选:D【考点】利用了角的概念求解从一点引出两条射线组成的图形就叫做角角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字4、B【解析】【分析】根据角的表示方法,用三个字母表
8、示角,顶点字母写在中间,例如AOC表示该角是射线OA和线段OC的夹角,据此分析即可【详解】A. 表示射线的夹角,表示射线的夹角,不是同一个角,不符合题意;B. 表示射线的夹角,表示射线的夹角,是同一个角,符合题意;C. 表示射线的夹角,表示射线的夹角,不是同一个角,不符合题意;D. 表示射线的夹角,表示射线的夹角,不是同一个角,不符合题意故选B【考点】本题考查了角的表示方法,理解三个字母表示角的方法是解题的关键5、A【解析】【分析】根据射线的定义及其表示可判断;根据两点间的距离定义可判断;根据直线基本事实可判断;根据线段中点定义可判断,然后可得出结论【详解】解:直线上一点和她一旁的部分,射线O
9、P端点是O,从O向P无限延伸,射线PO端点是P,从P向O无限延伸,所以不是同一条射线,故错误;连接两点的线段的长度叫两点间的距离,故错误;经过两点有且只有一条直线,两点确定一条直线符合基本事实,故正确;把一条线段分成两条相等的线段的点,若AC=BC,点C可以在线段AB上时,C是线段AB的中点,若AC=BC,点C在线段AB外时,点C不是线段AB的中点,故错误正确的个数是1故选择A【考点】本题考查点与线的基本概念,掌握射线,两点间距离,直线基本事实,线段中点是解题关键6、B【解析】【分析】根据角平分线的定义可知,AOB2AOC2BOC,由COD是直角可得COD90,根据已知条件可求BOC,进一步得
10、到AOB的度数【详解】解:OC平分AOB,AOB2AOC2BOC,COD是直角,COD90,BOD118,BOCBODCOD1189028,AOB2BOC56故选:B【考点】本题主要考查了角的计算,准确应用角平分线的性质计算是关键7、B【解析】【分析】利用正方体及其表面展开图的特点解题【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图故选:B【考点】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可8、B【解析】【分析】根据两
11、点之间线段最短解答【详解】解:如果把原来的弯曲河道改直,根据两点之间线段最短可得到两地间河道长度变短了,故选:B【考点】此题考查线段的性质:两点之间线段最短9、D【解析】【分析】根据点动成线,线动成面,面动成体即可一一判定【详解】解:A笔尖在纸上移动划过的痕迹,反映的是“点动成线”,故不符合题意;B长方形绕一边旋转一周形成的几何体,反映的是“面动成体”,故不符合题意;C流星划过夜空留下的尾巴,反映的是“点动成线”,故不符合题意;D汽车雨刷的转动扫过的区域,反映的是“线动成面”,故符合题意故选:D【考点】本题考查了点动成线,线动成面,面动成体,理解和掌握点动成线,线动成面,面动成体是解决本题的关
12、键10、A【解析】【分析】根据两点之间线段最短可判断方案A比方案C、D中的管道长度最短,根据垂线段最短可判断方案A比方案B中的管道长度最短【详解】解:四个方案中,管道长度最短的是A故选:A【考点】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段二、填空题1、30【解析】【详解】试题解析:RtABC中, 由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=30.故答案为30.2、 4或6#6或4【解析】【分析】(1)由题意可求得AB=6,则可求得OB=1,根据题意可得结果;(2)分点M位于点B左侧和右侧两种情
13、况可求得结果;【详解】解:(1)由题意得AB=1.2OA=1.25=6,OB=6-5=1,点B表示的数为-1,故答案为:-1;(2)当点M位于点B左侧时,点M表示的数为-1-5=-6,当点M位于点B右侧时,点M表示的数为-1+5=4,OM=|-6|=6,或OM=|4|=4,故答案为:4或6【考点】此题考查了数形结合与分类讨论解决问题的能力,数轴上两点间的距离,解题的关键是能确定数轴上的点表示的数与对满足条件的点的不同情况的全面考虑3、 3 AOD【解析】【分析】根据OC、OD三等分可得,由此即可求得答案【详解】解:OC、OD三等分,3,故答案为:3;AOD【考点】本题考查了角的三等分线及角平分
14、线的定义,熟练掌握角平分线的定义是解决本题的关键4、【解析】【分析】先作出示意图,再由方向角和AB、BC的距离求得AC的距离【详解】解:如图:B60,AB200m,BC100m,则由勾股定理可得:AC=100m故答案为【考点】本题主要考查了方向角的含义,正确记忆三角函数的定义是解决本题的关键5、45【解析】【分析】根据角平分线的定义得到DOC,COE,根据角的和差即可得到结论【详解】解:OD平分,DOC,OE平分,COE,DOEDOC+COEAOB45故答案为:45【考点】本题考查了角平分线的定义以及有关角的计算,解题关键是熟练掌握角平分线的定义三、解答题1、(1)见解析;(2)见解析;(3)
15、 ;(4);垂线段最短【解析】【分析】(1)利用三角板的直角,过点P作OAPQ即可; (2)过点P画线段PCOB交OA于点C,画线段PDOA交OB于点D即可;(3)利用平行线的性质和三角形内角和定理即可求解(4)根据直线外一点与直线上所有点的连线中垂线段距离最短即可求解.【详解】如图:(2)如图: (3)AOPD, O=ODP=40, PQBO, PQD=90, DPQ=50, 故答案为:50(4)因为PQBO,所以;点到直线上所有连线中,垂线段距离最短.故答案为:垂线段最短.【考点】本题主要考查了基本作图的中的垂线和平行线的作法以及作一个角等于已知角,要求能够熟练地运用尺规作图,并保留作图痕
16、迹2、(1)是;(2)6或9或12;(3)或或或或或6【解析】【分析】(1)根据“奇点”的定义即可求解;(2)分当N为中点时, 当N为CD的三等分点,且N靠近C点时,当N为CD的三等分点,且N靠近D点时,进行讨论求解即可;(3)分由题意可知A不可能为P、Q两点的巧点,此情况排除;当P为A、Q的巧点时;当Q为A、P的巧点时;进行讨论求解即可【详解】(1)一条线段的长度是另外一条线段长度的2倍,则称这个点为该线段的“奇点”,线段的中点是这条线段的“奇点”,(2),点N是线段CD的奇点,可分三种情况,当N为中点时,,当N为CD的三等分点,且N靠近C点时,,当N为CD的三等分点,且N靠近D点时,(3)
17、,秒后,由题意可知A不可能为P、Q两点的巧点,此情况排除;当P为A、Q的巧点时,有三种情况;1)点P为AQ中点时,则,即,解得:2)点P为AQ三等分点,且点P靠近点A时,则,即,解得:3)点P为AQ三等分点,且点P靠近点Q时,则,即,解得:当Q为A、P的巧点时,有三种情况;1)点Q为AP中点时,则,即,解得:2)点Q为AP三等分点,且点Q靠近点A时,则,即,解得:3)点Q为AP三等分点,且点Q靠近点P时,则,即,解得:【考点】考查了两点间的距离,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解3、见解析.【解析】【分析】根据截面的定义:用一
18、个平面去截一个几何体,截出的面叫做截面,以及几何体(正方体、圆锥、圆柱)的形状,即可判断截面的形状【详解】可以得到三角形截面;沿圆锥的高线切割,可得到等腰三角形截面;沿正方体的对角线切割,可得到长方形截面;截面与底平行,可以得到圆形截面【考点】考查了常见几何体以及截面的性质,截面的形状与被截几何体有关,还与截面的角度和方向有关.4、厘米【解析】【分析】设=x厘米,根据题意可得AM=,AN=,然后根据ANAM=MN,列出方程即可求出结论【详解】解:设=x厘米线段被点M分成2:3两段,且被点N分成4:1两段,AM=,AN=ANAM=MN,厘米,=3解得:x=即厘米【考点】此题考查的是线段的和与差,
19、掌握各线段的关系和方程思想是解决此题的关键5、 (1)4;10(2)(3)当或时,满足【解析】【分析】(1)根据绝对值及偶次幂的非负性可直接进行求解;(2)由题意可得,然后根据数轴上两点距离公式可进行分类求解;(3)由(1)(2)可得:点P在数轴上所表示的数为,点Q在数轴上所表示的数为,点A表示的数为4,点B表示的数为10,点C表示的数为-20,则有,然后可得,进而分当点P、M都在点O的左侧时,当点P、M都在点O的右侧且在点A的左侧,当点P、M都在点A的右侧且在点P、Q没有重合,最后问题可求解(1)解:,解得:;故答案为4;10;(2)解:,且点A表示的数为4,点C所表示的数为-20,由题意可得:,则有点P在数轴上所表示的数为,点Q在数轴上所表示的数为,;(3)解:由(1)(2)可得:点P在数轴上所表示的数为,点Q在数轴上所表示的数为,点A表示的数为4,点B表示的数为10,点C表示的数为-20,点为的中点,点为的中点,当点P、M都在点O的左侧时,可得:,如图所示:,解得:;当点P、M都在点O的右侧且在点A的左侧,即,如图所示:,解得:(不符合题意,舍去);当点P、M都在点A的右侧且在点P、Q没有重合,即,如图所示:,解得:;当点P在点Q的右侧时,显然是不符合;综上所述:当,或【考点】本题主要考查线段的和差关系及一元一次方程的应用,熟练掌握线段的和差关系及分类讨论思想是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有