收藏 分享(赏)

《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc

上传人:高**** 文档编号:955600 上传时间:2024-06-02 格式:DOC 页数:22 大小:4.80MB
下载 相关 举报
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第1页
第1页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第2页
第2页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第3页
第3页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第4页
第4页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第5页
第5页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第6页
第6页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第7页
第7页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第8页
第8页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第9页
第9页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第10页
第10页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第11页
第11页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第12页
第12页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第13页
第13页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第14页
第14页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第15页
第15页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第16页
第16页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第17页
第17页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第18页
第18页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第19页
第19页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第20页
第20页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第21页
第21页 / 共22页
《解析》河北省张家口市第四中学2018-2019学年高二6月月考数学(理)试卷 WORD版含解析.doc_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 高二年级2018-2019学年第二学期6月月考试卷数学试题(理)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则=A. B. C. D. 【答案】C【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法,利用数形结合的思想解题详解】由题意得,则故选C【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分2.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D. 【答案】C【解析】【分析】本题考点为复数的运算,为基础题目,难度偏易此题可采用几

2、何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C【详解】则故选C【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养采取公式法或几何法,利用方程思想解题3.已知,则A. B. C. D. 【答案】B【解析】【分析】运用中间量比较,运用中间量比较【详解】则故选B【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养采取中间变量法,利用转化与化归思想解题4.设,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】分析】分别求出两不等式的解集,根据两解集的包含关系确定.详解】化简不等

3、式,可知 推不出;由能推出,故“”是“”的必要不充分条件,故选B。【点睛】本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件。5.函数f(x)=在,的图像大致为A. B. C. D. 【答案】D【解析】【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案【详解】由,得是奇函数,其图象关于原点对称又故选D【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养采取性质法或赋值法,利用数形结合思想解题6.若ab,则A. ln(ab)0B. 3a0D. ab【答案】C【解析】分析】本题也可用直接法,因为,所以,当时,知A错,因为是增

4、函数,所以,故B错;因为幂函数是增函数,所以,知C正确;取,满足,知D错【详解】取,满足,知A错,排除A;因为,知B错,排除B;取,满足,知D错,排除D,因为幂函数是增函数,所以,故选C【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断7.已知非零向量a,b满足=2,且(ab)b,则a与b的夹角为A. B. C. D. 【答案】B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角【详解】因为

5、,所以=0,所以,所以=,所以与的夹角为,故选B【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为8.下列函数中,以为周期且在区间(,)单调递增的是A. f(x)=cos 2xB. f(x)=sin 2xC. f(x)=cosxD. f(x)= sinx【答案】A【解析】【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养画出各函数图象,即可做出选择【详解】因为图象如下图,知其不是周期函数,排除D;因为,周期为,排除C,作出图象,由图象知,其周期为,在区间单调递增,A正确;作出的图象,由图象知,其

6、周期为,在区间单调递减,排除B,故选A【点睛】利用二级结论:函数的周期是函数周期的一半;不是周期函数;9.记为等差数列的前n项和已知,则A. B. C. D. 【答案】A【解析】【分析】等差数列通项公式与前n项和公式本题还可用排除,对B,排除B,对C,排除C对D,排除D,故选A【详解】由题知,解得,故选A【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断10.双曲线C:的 一条渐近线的倾斜角为130,则C的离心率为A. 2sin40B. 2cos40C. D. 【答

7、案】D【解析】【分析】由双曲线渐近线定义可得,再利用求双曲线的离心率【详解】由已知可得,故选D【点睛】对于双曲线:,有;对于椭圆,有,防止记混11.关于函数有下述四个结论:f(x)是偶函数 f(x)在区间(,)单调递增f(x)在有4个零点 f(x)的最大值为2其中所有正确结论的编号是A. B. C. D. 【答案】C【解析】【分析】化简函数,研究它的性质从而得出正确答案【详解】为偶函数,故正确当时,它在区间单调递减,故错误当时,它有两个零点:;当时,它有一个零点:,故在有个零点:,故错误当时,;当时,又为偶函数,的最大值为,故正确综上所述, 正确,故选C【点睛】画出函数的图象,由图象可得正确,

8、故选C12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,则C的方程为A. B. C. D. 【答案】B【解析】【分析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有在中,由余弦定理推论得在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有在和中,由余弦定理得,又互补,两式消去,得,解得所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处

9、的切线方程为_【答案】.【解析】【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程【详解】详解:所以,所以,曲线在点处的切线方程为,即【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误求导要“慢”,计算要准,是解答此类问题的基本要求14.记Sn为等比数列an的前n项和若,则S5=_【答案】.【解析】【分析】本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到题目的难度不大,注重了基础知识、基本计算能力的考查【详解】设等比数列的公比为,由已知,所以又,所以所以【点睛】准确计算,是解答此类问

10、题的基本要求本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是_【答案】0.18【解析】【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,

11、甲队以获胜的概率是综上所述,甲队以获胜的概率是【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算16.的内角的对边分别为.若,则的面积为_.【答案】【解析】【分析】本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误解答此类问题,关键是在明确方法的基础

12、上,准确记忆公式,细心计算三、解答题:共70分。17.的内角A,B,C的对边分别为a,b,c,设(1)求A;(2)若,求sinC【答案】(1);(2).【解析】【分析】(1)利用正弦定理化简已知边角关系式可得:,从而可整理出,根据可求得结果;(2)利用正弦定理可得,利用、两角和差正弦公式可得关于和的方程,结合同角三角函数关系解方程可求得结果.【详解】(1)即:由正弦定理可得: (2),由正弦定理得:又,整理可得: 解得:或因为所以,故.(2)法二:,由正弦定理得:又,整理可得:,即 由,所以.【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,

13、解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.18.如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角A-MA1-N的正弦值【答案】(1)见解析;(2).【解析】【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)以菱形对角线交点为原点可建立空间直角坐标系,通过取中点,可证得平面,得到平面的法向量;再通过向量法求得平面的法向量,利用向量夹角公式求得两个法向量夹角的余弦值,进而可

14、求得所求二面角的正弦值.【详解】(1)连接,分别为,中点 为的中位线且又为中点,且 且 四边形为平行四边形,又平面,平面平面(2)设,由直四棱柱性质可知:平面四边形为菱形 则以为原点,可建立如下图所示的空间直角坐标系:则:,D(0,-1,0)取中点,连接,则四边形为菱形且 为等边三角形 又平面,平面 平面,即平面为平面的一个法向量,且设平面的法向量,又,令,则, 二面角的正弦值为:【点睛】本题考查线面平行关系证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.19.11分制乒乓球比赛,每赢一球

15、得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1);(2)0.1【解析】【分析】(1)本题首先可以通过题意推导出所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出所包含的事件为“前两球甲乙各得分,后两球均为甲得分”,然后计算出每种事件的概率并求

16、和即可得出结果。【详解】(1)由题意可知,所包含的事件为“甲连赢两球或乙连赢两球”所以(2)由题意可知,包含的事件为“前两球甲乙各得分,后两球均为甲得分”所以【点睛】本题考查古典概型的相关性质,能否通过题意得出以及所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题。20.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|【答案】(1);(2).【解析】【分析】(1)设直线:,;根据抛物线焦半径公式可得;联立直线方程与抛物线方程,利用韦达定理可构造关于的方程,

17、解方程求得结果;(2)设直线:;联立直线方程与抛物线方程,得到韦达定理的形式;利用可得,结合韦达定理可求得;根据弦长公式可求得结果.【详解】(1)设直线方程为:,由抛物线焦半径公式可知: 联立得:则 ,解得:直线的方程为:,即:(2)设,则可设直线方程为:联立得:则 , , 则【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.21.已知函数.(1)讨论的单调性;(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.【答案】(1)见详解;(2) 或.【

18、解析】【分析】(1)先求的导数,再根据的范围分情况讨论函数单调性;(2) 根据的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出,的值.【详解】(1)对求导得.所以有当时,区间上单调递增,区间上单调递减,区间上单调递增;当时,区间上单调递增;当时,区间上单调递增,区间上单调递减,区间上单调递增.(2)若在区间有最大值1和最小值-1,所以若,区间上单调递增,区间上单调递减,区间上单调递增;此时在区间上单调递增,所以,代入解得,与矛盾,所以不成立.若,区间上单调递增;在区间.所以,代入解得 .若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上

19、最小值为而,故所以区间上最大值为. 即相减得,即,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为. 即相减得,解得,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.所以有区间上单调递减,所以区间上最大值为,最小值为即解得.综上得或.【点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少。考查的函数单调性,最大值最小值这种基本概念的计算。思考量不大,由计算量补充。22.选修4-4:坐标系与参数方程 在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原

20、点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值【答案】(1);(2)【解析】【分析】(1)利用代入消元法,可求得的直角坐标方程;根据极坐标与直角坐标互化原则可得的直角坐标方程;(2)利用参数方程表示出上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.【详解】(1)由得:,又整理可得的直角坐标方程为:又,的直角坐标方程为:(2)设上点的坐标为:则上的点到直线的距离当时,取最小值则【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3