ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:1.03MB ,
资源ID:949886      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-949886-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013高三数学大一轮复习学案:导数及其应用.板块三.导数的应用3-最值.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013高三数学大一轮复习学案:导数及其应用.板块三.导数的应用3-最值.doc

1、高考资源网() 您身边的高考专家板块三.导数的应用典例分析题型四:函数的最值【例1】 函数在闭区间上的最大值和最小值分别是( )A B C D【例2】 已知(是常数)在上有最大值,那么在上的最小值是( )ABC D【例3】 设函数 则的最大值为 【例4】 函数的最大值是( )A B C D【例5】 设函数,则( )A有最大值 B有最小值 C是增函数D是减函数【例6】 对于函数,在使恒成立的所有常数中,我们把中的最大值称为函数的“下确界”,则函数的下确界为 【例7】 设函数在内有定义对于给定的正数,定义函数,取函数,若对任意的,恒有,则( )A的最大值为 B的最小值为C的最大值为 D的最小值为【

2、例8】 下列说法正确的是( )A函数在闭区间上的极大值一定比极小值大B函数在闭区间上的最大值一定是极大值C满足的点可能不是函数的极值点D函数在区间上一定存在最值【例9】 函数在区间上的最大值是 ;最小值是 【例10】 对于函数,有下列命题:过该函数图象上一点的切线的斜率为;函数的最小值为;该函数图象与轴有个交点;函数在上为减函数,在上也为减函数其中正确命题的序号是 【例11】 已知函数的定义域是,关于函数给出下列命题: 对于任意,函数是上的减函数; 对于任意,函数存在最小值; 存在,使得对于任意的,都有成立; 存在,使得函数有两个零点其中正确命题的序号是_(写出所有正确命题的序号)【例12】

3、已知在区间上是减函数,那么( )A有最大值 B有最大值 C有最小值D有最小值【例13】 求在上的最大值和最小值【例14】 已知函数 求函数的单调递减区间; 当时,求函数的最大值和最小值【例15】 已知函数的最大值为,最小值为,求、的值【例16】 已知函数,其中若在区间上的最小值为,求的值【例17】 已知,函数,当为何值时,取得最小值?【例18】 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为求,的值;求函数的单调递增区间,并求函数在上的最大值和最小值【例19】 设,函数若是函数的极值点,求的值;若函数在处取得最大值,求的取值范围若函数在时的最大值为,求的值【例20】 已知函数,

4、 求的单调递减区间; 若在区间上的最大值为,求它在该区间上的最小值【例21】 已知 当时,讨论的单调性、极值; 是否存在实数,使的最小值是,如果存在,求出的值;若不存在,请说明理由【例22】 设,函数 当时,求曲线在处的切线方程; 当时,求函数的单调性; 当,时,求函数的最小值【例23】 设是函数的一个极值点求与的关系式(用表示),并求的单调区间;设,若存在使得成立,求的取值范围【例24】 已知函数,求的单调区间和值域;设,函数,若对于任意,总存在,使得成立,求的取值范围【例25】 已知函数,且有极值求实数的取值范围;求函数的值域;函数,证明:,使得成立【例26】 已知函数 当时,讨论的单调性

5、; 设当时,若对任意,存在,使,求实数取值范围【例27】 设函数当时,求的单调区间;若在上的最大值为,求的值【例28】 已知函数当时,求函数的单调区间;若函数在上的最小值是求的值【例29】 已知是实数,函数若,求的值及曲线在点处的切线方程;求的极值求在区间上的最大值【例30】 已知函数, 讨论的单调性; 设,求在区间上的值域,其中是自然对数的底数【例31】 已知为实数,求导数;若,求在上的最大值和最小值;若在和上都是递增的,求的取值范围【例32】 已知函数, 若在上是减函数,求的最大值; 若的单调递减区间是,求函数图像过点的切线与两坐标轴围成图形的面积【例33】 设曲线在点处的切线与轴,轴所围

6、成的三角形的面积为,求切线的方程;求的最大值【例34】 已知函数, 若在区间上的最大值为1,最小值为,求、的值; 在的条件下,求经过点且与曲线相切的直线的方程; 设函数的导函数为,函数,试判断函数的极值点个数,并求出相应实数的范围【例35】 在实数集上定义运算,若,若求的解析式;若在上是减函数,求实数的取值范围;若,的曲线上是否存在两点,使得过这两点的切线互相垂直,若存在,求出切线方程;若不存在,说明理由【例36】 已知函数,且若,求的值;当时,求函数的最大值;求函数的单调递增区间【例37】 已知函数若为的极值点,求的值;若的图象在点处的切线方程为,求在区间上的最大值;当时,若在区间上不单调,

7、求的取值范围【例38】 已知函数若为的极值点,求的值;若的图象在点处的切线方程为,求在区间上的最大值;求函数的单调区间【例39】 已知函数,其中求函数的零点;讨论在区间上的单调性;在区间上,是否存在最小值?若存在,求出最小值;若不存在,请说明理由【例40】 已知函数,其中若函数存在零点,求实数的取值范围;当时,求函数的单调区间,并确定此时是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由【例41】 已知函数,曲线在点处的切线与轴和轴分别交于、两点,设为坐标原点,求面积的最大值【例42】 已知函数写出函数的定义域,并求函数的单调区间;设过曲线上的点的切线与轴、轴所围成的三角形的面积为,求的最小值,并求此时点的坐标【例43】 函数,该函数图象在点处的切线为,设切线分别交轴和轴于两点和将(为坐标原点)的面积表示为的函数;若,函数的图象与轴交于点,则与的大小关系如何?证明你的结论;若在处,取得最小值,求此时的值及的最小值【例44】 如图,曲线段是函数的图象,轴于点,曲线段上一点处的切线交轴于点,交线段于点,若已知,求切线的方程;求的面积的最大值.高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3