ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:1.01MB ,
资源ID:945741      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-945741-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017届高考数学(理)一轮复习课后作业:第八章第六节 利用空间向量求空间角 WORD版含解析.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017届高考数学(理)一轮复习课后作业:第八章第六节 利用空间向量求空间角 WORD版含解析.DOC

1、1如图,在四棱锥 PABCD中,PC底面 ABCD,四边形ABCD是直角梯形,ABAD,ABCD,AB2AD2CD2,E是PB的中点(1)求证:平面EAC平面PBC;(2)若二面角 PACE的余弦值为,求直线PA与平面EAC所成角的正弦值2.如图,在四棱锥 PABCD中,底面ABCD是菱形,ADC60,侧面PDC是正三角形,平面PDC平面ABCD,CD2,M为PB的中点(1)求证:PA平面CDM;(2)求二面角 DMCB的余弦值3(2015广东高考)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PDPC4,AB6,BC3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF

2、2FB,CG2GB. (1)证明:PEFG;(2)求二面角PADC的正切值;(3)求直线PA与直线FG所成角的余弦值1(2015浙江高考)如图,在三棱柱ABCA1B1C1中,BAC90,ABAC2,A1A4,A1在底面ABC的射影为BC的中点,D是B1C1的中点(1)证明:A1D平面A1BC;(2)求二面角A1BDB1的平面角的余弦值2.如图,在四棱锥PABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,ABCBAD,PAAD2,ABBC1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长3(2016黄冈模

3、拟)在等腰梯形ABCD中,ADBC,ADBC,ABC60,N是BC的中点,将梯形ABCD绕AB旋转 90,得到梯形ABCD(如图)(1)求证:AC平面ABC;(2)求证:CN平面ADD;(3)求二面角ACNC的余弦值答 案1解:(1)证明:PC平面ABCD,AC平面ABCD,ACPC,AB2,ADCD1,ADC90,ACBC,AC2BC2AB2,ACBC.又BCPCC,AC平面PBC.AC平面EAC,平面EAC平面PBC.(2)如图,以C为原点,分别为x轴,y轴,z轴正方向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,1,0)设P(0,0,a)(a0),则E,取m(1,1

4、,0),则m为平面PAC的一个法向量即取 xa,ya,z2,则n(a,a,2)依题意,|cosm,n|,则a1. 即直线PA与平面EAC所成角的正弦值为.2.解:(1)证明:法一:取PA的中点N,连接MN,DN,又M为PB的中点,所以MNAB,又菱形ABCD中,ABCD,所以MNCD,所以C,D,M,N四点共面取DC的中点为O,连接PO.因为侧面PDC是正三角形,平面PDC平面ABCD,所以PO底面ABCD.因为底面ABCD为菱形且ADC60,DC2,DO1,故OADC.因为POAOO,所以DC平面POA,所以DCPA,在PAD中,PDAD2,N为PA的中点,所以DNPA.又DNDCD,DN平

5、面CDNM,DC平面CDNM,所以PA平面CDNM,即PA平面CDM.法二:取DC的中点为O,连接PO,OA,因为侧面PDC是正三角形,平面PDC平面ABCD.所以PO底面ABCD,因为底面ABCD为菱形且ADC60.DC2,DO1,有OADC.以O 原点,分别以OA,OC,OP所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系Oxyz,则A(,0,0),P(0,0,),B(,2,0),C(0,1,0),D(0,1,0),所以 M, 观察可知二面角 DMCB为钝角,所以所求二面角的余弦值是.3解:法一:(1)证明:在PCD中,E为CD的中点,且PCPD,PECD.又平面PCD平面ABCD,

6、且平面PCD平面ABCDCD,PE平面PCD,PE平面ABCD.又FG平面ABCD,PEFG.(2)由(1)知PE平面ABCD,且AD平面ABCD,PEAD.又四边形ABCD是长方形,ADCD.又PECDE,AD平面PCD,ADPD,PDE为二面角PADC的平面角ABCD6,DE3.在RtPED中,PE ,tanPDE,所求二面角PADC的正切值为.(3)如图,连接AC,在ABC中,AF2FB,CG2GB,FGAC.由异面直线所成角的定义,知直线PA与直线FG所成角的大小等于PAC的大小在RtPDA中,PA5,AC3,PC4,cosPAC,直线PA与直线FG所成角的余弦值为.法二:在PCD中,

7、E为CD的中点,且PCPD,PECD.又平面PCD平面ABCD,且平面PCD平面ABCDCD,PE平面PCD,PE平面ABCD.取AB的中点H,连接EH.四边形ABCD是长方形,EHCD.如图,以E为原点,EH,EC,EP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,PDPC4,AB6,BC3,AF2FB,CG2GB,E(0,0,0),P(0,0,),F(3,1,0),G(2,3,0),A(3,3,0),D(0,3,0) (2)PE平面ABCD,即令z13,则x10,y1,n(0,3)由图可知二面角PADC是锐角,设为,则sin ,tan . 1解:(1)证明:设E为BC的中点,连接AE,

8、DE,A1E.由题意得A1E平面ABC,所以A1EAE.因为ABAC,所以AEBC.故AE平面A1BC.由D,E分别为B1C1,BC的中点,得DEB1B且DEB1B,从而DEA1A,DEA1A,所以四边形A1AED为平行四边形故A1DAE.又因为AE平面A1BC,所以A1D平面A1BC. (2)法一:如图,作A1FBD且A1FBDF,连接B1F. 由AEEB,A1EAA1EB90,得A1BA1A4.由A1DB1D,A1BB1B,得A1DB与B1DB全等由A1FBD,得B1FBD,因此A1FB1为二面角A1BDB1的平面角由A1D,A1B4,DA1B90,得BD3,A1FB1F,由余弦定理得co

9、sA1FB1.法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的非负半轴,建立空间直角坐标系Exyz,如图所示由题意知各点坐标如下:A1(0,0,),B(0,0),D(,0,),B1(,)设平面A1BD的法向量为m(x1,y1,z1),平面B1BD的法向量为n(x2,y2,z2)可取n(,0,1)于是|cosm,n|.由题意可知,所求二面角的平面角是钝角,故二面角A1BDB1的平面角的余弦值为.2.解:以为正交基底建立如图所示的空间直角坐标系Axyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2) 设平面PCD的法向量为m(x,y,z),即令y1

10、,解得z1,x1.所以m(1,1,1)是平面PCD的一个法向量所以平面PAB与平面PCD所成二面角的余弦值为. 当且仅当t,即时,的最大值为.因为ycos x在上是减函数,所以此时直线CQ与DP所成角取得最小值又因为BP,所以BQBP.3解:(1)证明:ADBC,N是BC的中点,ADNC,又ADBC,四边形ANCD是平行四边形,ANDC,又ABC60,ABBNAD,四边形ANCD是菱形,ACBDCB30,BAC90,即ACAB,又平面CBA平面ABC,平面CBA平面ABCAB,AC平面ABC.(2)证明:ADBC,ADBC,ADADA,BCBCB,平面ADD平面BCC,又CN平面BCC,CN平面ADD.(3)AC平面ABC,AC平面ABC,如图建立空间直角坐标系,设AB1,则B(1,0,0),C(0,0),C(0,0,),N,设平面CNC的法向量为n(x,y,z)取z1,则x,y1,n(,1,1)AC平面ABC,平面CAN平面ABC,又BDAN,平面CAN平面ABCAN,BD平面CAN.设BD与AN交于点O,则O为AN的中点,故O,由图形可知二面角ACNC为钝角,二面角ACNC的余弦值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3