1、引例 抛掷一枚骰子,所得的点数 有哪些值?取每个值的概率是多少?解:6161616161)4(P)2(P)3(P)5(P)6(P61)1(P则P126543616161616161求出了 的每一个取值的概率列出了随机变量 的所有取值 的取值有1、2、3、4、5、6前进二、离散型随机变量的分布列设随机变量 的所有可能的取值为则称表格,321nxxxx的每一个取值 的概率为 ,ix),2,1(iiipxP)(P1xix2x1p2pip为随机变量 的概率分布,简称的分布列注:1、分布列的构成 列出了随机变量 的所有取值求出了 的每一个取值的概率2、分布列的性质,2,1,0 ipi121 pp返回 一
2、袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,以 表示取出球的最大号码,求 的分布列例1:解:”3“表示其中一个球号码等于“3”,另两个都比“3”小)3(P362211CCC201”4“)4(P362311CCC203”5“)5(P362411CCC103”6“)6(P362511CCC21 随机变量 的分布列为:P654320120310321的所有取值为:3、4、5、6表示其中一个球号码等于“4”,另两个都比“4”小表示其中一个球号码等于“5”,另两个都比“5”小表示其中一个球号码等于“3”,另两个都比“3”小返回课堂练习:1、某厂生产电子元件,其产品的
3、次品率为5%,现从一批产品中任意地连续取出2件,求其中的次品数 的分布列3、设随机变量 的分布列为则 的值为 ,31)(iaiP3,2,1ia2、设随机变量 的分布列如下:P4321613161p则 的值为 p311327返回例2:已知随机变量 的分布列如下:P213210121611213141121分别求出随机变量211 22;的分布列解:由211 可得1 的取值为1、21、0、21、1、23且相应取值的概率没有变化的分布列为:1P1101216112131411212121231返回例2:已知随机变量 的分布列如下:P213210121611213141121分别求出随机变量211 22
4、;的分布列解:的分布列为:2由可得2 的取值为0、1、4、922)1()1()1(2PPP)0()0(2PP31 1214131)2()2()4(2PPP 6112141)3()9(2PP121P09412131411312离散型随机变量的分布列(二)一、复习引入:问题1:抛掷一个骰子,设得到的点数为,则的取值情况如何?取各个值的概率分别是什么?p213456616161616161问题2:连续抛掷两个骰子,得到的点数之和为,则取哪些值?各个对应的概率分别是什么?p 42356789101112361362363364365366365364363362361表中从概率的角度指出了随机变量在随
5、机试验中取值的分布状况,称为随机变量的概率分布。如何给出定义呢?二、离散型随机变量的分布列123,ix x xx x1 x2 xi p p1 p2 pi 称为随机变量的概率分布,简称的分布列。则表(1,2,)ix i()iiPxp 取每一个值的概率 设离散型随机变量可能取的值为 1、概率分布(分布列)根据随机变量的意义与概率的性质,你能得出分布列有什么性质?离散型随机变量的分布列具有下述两个性质:一般地,离散型随机变量在某一范围内的概率等于它取这个范围内各个值的概率之和。,321,0).1(ipi1).2(321ppp例、某一射手射击所得环数的分布列如下:4 5 6 7 8 9 10 p 0.
6、02 0.04 0.06 0.09 0.28 0.29 0.22 求此射手“射击一次命中环数7”的概率练习、随机变量的分布列为 求常数a。解:由离散型随机变量的分布列的性质有20.160.31105aaa解得:910a 35a(舍)或 -10123p0.16a/10a2a/50.3()kkn knPkC p q 01 k np 00nnC p q111nnC p q kkn knC p q 0nnnC p q(;,)kkn knC p qb k n p(,)B n p我们称这样的随机变量服从二项分布,记作,其中n,p为参数,并记如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个
7、事件恰好发生k次的概率是多少?在这个试验中,随机变量是什么?2、二项分布其中k=0,1,n.p=1-q.于是得到随机变量的概率分布如下:例1:一个口袋里有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以表示取出的3个球中的最小号码,试写出的分布列.解:随机变量的可取值为 1,2,3.当=1时,即取出的三只球中的最小号码为1,则其它两只球只能在编号为2,3,4,5的四只球中任取两只,故有P(=1)=3/5;3524/CC同理可得P(=2)=3/10;P(=3)=1/10.因此,的分布列如下表所示 123p3/53/101/10例2:1名学生每天骑自行车上学,从家到学校的途中有5个交通岗,
8、假设他在交通岗遇到红灯的事件是独立的,并且概率都是1/3.(1)求这名学生在途中遇到红灯的次数的分布列.(2)求这名学生在途中至少遇到一次红灯的概率.解:(1)B(5,1/3),的分布列为 P(=k)=,k=0,1,2,3,4,5.kkkC55)32()31(2)所求的概率:P(1)=1-P(=0)=1-32/243 =211/243.例3:将一枚骰子掷2次,求下列随机变量的概率分布.(1)两次掷出的最大点数;(2)两次掷出的最小点数;(3)第一次掷出的点数减去第二次掷出的点数之差.解:(1)=k包含两种情况,两次均为k点,或一个k点,另一个小于k点,故P(=k)=,k=1,2,3,4,5,6
9、.3612662)1(1kk(3)的取值范围是-5,-4,,4,5.=-5,即第一次是1点,第二次是6点;,从而可得的分布列是:(2)=k包含两种情况,两次均为k点,或一个k点,另一个大于k点,故P(=k)=,k=1,2,3,4,5,6.36213662)6(1kk-5-4-3-2-1 0 1 2 3 4 5 p 361362363364365366365364363362361例3.(2000年高考题)某厂生产电子元件,其产品的次品率为5%现从一批产品中任意地连续取出2件,写出其中次品数的概率分布解:依题意,随机变量B(2,5%)所以,0.00251005C2)P(0.09510095100
10、5C1)P(0.9025,10095C0)P(22212202因此,次品数的概率分布是012P0.90250.0950.0025例4、在一袋中装有一只红球和九只白球。每次从袋中任取一球取后放回,直到取得红球为止,求取球次数的分布列。分析:袋中虽然只有10个球,由于每次任取一球,取后又放回,因此应注意以下几点:(1)一次取球两个结果:取红球A或取白球,且P(A)=0.1;(2)取球次数可能取1,2,;(3)由于取后放回。因此,各次取球相互独立。1.09.0)()()()()()(111kkkAPAPAPAPAAAAPkP 3.几何分布在次独立重复试验中,某事件A第一次发生时所作的试验次数也是一个
11、取值为正整数的随机变量。“=k”表示在第k次独立重复试验时事件A第一次发生。如果把第k次实验时事件A发生记为Ak,p(Ak)=p,那么于是得到随机变量的概率分布如下:pqppAPAPAPAPAPAAAAAPkPkkkKkK1113211321)1()()()()()()()((k=0,1,2,q=1-p.)123 kP p pq pq2 pqk-1 称服从几何分布,并记g(k,p)=pqk-1检验p1+p2+=1例(1)某人射击击中目标的概率是0.2,射击中每次射击的结果是相互独立的,求他在10次射击中击中目标的次数不超过5次的概率(精确到0.01)。例(2)某人每次投篮投中的概率为0.1,各
12、次投篮的结果互相独立。求他首次投篮投中时投篮次数的分布列,以及他在5次内投中的概率(精确到0.01)。返回 从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽到的可能性相同,在下列三种情况下,分别求出直到取出合格品为止时所需抽取的次数 的分布列解:”1“表示只取一次就取到合格品)1(P113110CC1310”2“表示第一次取到次品,第二次取到合格品)2(P21311013ACC265”3“表示第一、二次都取到次品,第三次取到合格品)3(P31311023ACA1435随机变量的分布列为:的所有取值为:1、2、3、4每次取出的产品都不放回此批产品中;P432113102
13、6514352861返回某射手有5发子弹,射击一次命中的概率为0.9如果命中了就停止射击,否则一直射击到子弹用完,求耗用子弹数 的分布 如果命中2次就停止射击,否则一直射击到子弹用完,求耗用子弹数 的分布列解:的所有取值为:1、2、3、4、5”1“表示第一次就射中,它的概率为:9.0)1(P”2“表示第一次没射中,第二次射中,9.01.0)2(P9.01.0)4(3 P9.01.0)3(2 P同理 ,”5“表示前四次都没射中,41.0)5(P随机变量 的分布列为:P432159.09.01.0 9.01.02 9.01.03 41.0返回某射手有5发子弹,射击一次命中的概率为0.9如果命中了就
14、停止射击,否则一直射击到子弹用完,求耗用子弹数 的分布列如果命中2次就停止射击,否则一直射击到子弹用完,求耗用子弹数 的分布列解:的所有取值为:2、3、4、5”2“表示前二次都射中,它的概率为:29.0)2(P”3“表示前二次恰有一次射中,第三次射中,9.01.09.0)3(12CP”5“表示前四次中恰有一次射中,或前四次全部没射中 随机变量 的分布列为:2129.01.0 C9.01.09.0)4(213CP 同理 22139.01.0CP543229.02129.01.0 C22139.01.0C43141.01.09.0C小结:本节学习的主要内容及学习目标要求:1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题;3、理解二项分布和几何分布的概念。求离散型随机变量的概率分布的方法步骤:1、找出随机变量的所有可能的取值(1,2,);ix i 2、求出各取值的概率();iiPxp 3、列成表格。作业:课本第9页5、6、7、8、9