ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:2.48MB ,
资源ID:944530      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-944530-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年高中数学人教A版必修1教案:1-3-2奇偶性 2 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年高中数学人教A版必修1教案:1-3-2奇偶性 2 WORD版含答案.doc

1、13 函数的基本性质13.2奇偶性三维目标1知识与技能(1)能从数和形两个角度认识函数奇偶性;(2)能判断一些简单函数的奇偶性2过程与方法经历奇偶性概念的形成过程,提高抽象能力以及从特殊到一般的归纳概括能力3情感、态度与价值观(1)培养学生观察、归纳、抽象的能力,同时渗透数形结合的数学思想;(2)通过对函数奇偶性的研究,培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的研究态度重点难点重点:函数奇偶性的概念和几何意义难点:奇偶性概念的数学化提炼过程重难点的突破:函数的奇偶性实质就是函数图象的对称性,为了更有效地突出重点,突破难点,按照学生的认知规律,采用由特殊到一般、从具体到抽象的教学策

2、略,先让学生观察一组图形(关于原点对称或y轴对称),从中寻找它们的共性由于“数”与“形”有着密切的联系,为了便于从数值角度研究图象的对称,可提示学生图形是由点组成的,找出其间的关系后,建立奇(偶)函数的概念,最后,通过例题和练习进一步加深学生对定义的理解让学生在“观察归纳检验应用”的学习过程中,在掌握知识的同时培养数形结合的意识课标解读1.了解函数奇偶性的含义(难点)2掌握判断函数奇偶性的方法(重点、难点)3了解函数奇偶性与图象的对称性之间的关系(易混点)偶函数【问题导思】考察下列两个函数:(1)f(x)x2;(2)f(x)|x|.1这两个函数的图象有何共同特征?【提示】图象关于y轴对称2对于

3、上述两个函数,f(1)与f(1),f(2)与f(2),f(3)与f(3)有什么关系?【提示】f(1)f(1),f(2)f(2),f(3)f(3)3一般地,若函数yf(x)的图象关于y轴对称,则f(x)与f(x)有什么关系?反之成立吗?【提示】若函数yf(x)的图象关于y轴对称,则f(x)f(x)反之,若f(x)f(x),则函数yf(x)的图象关于y轴对称(1)定义:对于函数f(x)定义域内任意一个x,都有f(x)f(x),那么函数f(x)叫做偶函数(2)图象特征:图象关于y轴对称.奇函数【问题导思】函数f(x)x及f(x)的图象如图所示1两函数图象有何共同特征?【提示】关于原点对称2对于上述两

4、个函数f(1)与f(1),f(2)与f(2),f(3)与f(3)有什么关系?【提示】f(1)f(1),f(2)f(2),f(3)f(3)3一般地,若函数yf(x)的图象关于原点对称,则f(x)与f(x)有什么关系?反之成立吗?【提示】若函数yf(x)的图象关于原点对称,则f(x)f(x)反之,若f(x)f(x),则函数yf(x)的图象关于原点对称(1)定义:对于函数f(x)定义域内任意一个x,都有f(x)f(x),那么函数f(x)叫做奇函数(2)图象特征:图象关于原点对称.函数奇偶性的判断判断下列函数的奇偶性:(1)f(x);(2)f(x)|x1|x1|;(3)f(x);(4)f(x)0.【思

5、路探究】【自主解答】(1)f(x)的定义域是R,又f(x)f(x),f(x)是奇函数(2)f(x)的定义域是R,又f(x)|x1|x1|x1|x1|f(x),f(x)是偶函数(3)函数f(x)的定义域是(,1)(1,),不关于原点对称,f(x)是非奇非偶函数(4)f(x)的定义域为R,又f(x)0f(x),且f(x)0f(x),f(x)既是奇函数又是偶函数1本题(3)在求解过程中,若先对f(x)化简得到f(x)2x,就会得出f(x)为奇函数的错误2定义法判断函数奇偶性的步骤下列函数中是奇函数的序号是_y;f(x)x2;y2x1;f(x)3x,x1,2【解析】y的定义域为(,0)(0,),且f(

6、x)f(x),所以是奇函数;f(x)x2的定义域为R,且f(x)f(x),所以是偶函数;y2x1的定义域为R,图象既不关于原点对称,也不关于y轴对称,是非奇非偶函数;f(x)3x,x1,2,定义域不关于原点对称,不具备奇偶性【答案】利用函数的奇偶性求参数若函数f(x)ax2(b1)x3ab是偶函数,定义域为a1,2a,则ab等于()A.B. C.D2【思路探究】【自主解答】因为定义域a1,2a关于原点对称,所以(a1)2a0,解得a.所以f(x)x2(b1)x1b.又因为f(x)f(x),所以x2(b1)x1bx2(b1)x1b,由对应项系数相等,得(b1)b1.所以b1,所以ab.【答案】C

7、1本题中由f(x)f(x)求b时,运用了对应项系数相等的方法,这也是解决此类问题经常使用的方法2利用函数奇偶性求参数值的常见类型及求解策略(1)定义域含参数:奇(偶)函数f(x)的定义域为a,b,根据定义域关于原点对称,可以利用ab0求参数(2)解析式含参数:根据f(x)f(x)或f(x)f(x)列式,比较系数可解函数f(x)ax22x是奇函数,则a_.【解析】因为f(x)是奇函数,所以f(x)f(x),即ax22xax22x,由对应项系数相等得,a0.【答案】0利用函数的奇偶性求解析式已知函数f(x)是定义在R上的奇函数,当x0时,f(x)2x23x1,求:(1)f(0);(2)当x0时,f

8、(x)的解析式;(3)f(x)在R上的解析式【思路探究】(1)利用奇函数的定义求f(0);(2)【自主解答】(1)因为函数f(x)是定义在R上的奇函数,所以f(0)f(0),即f(0)0.(2)当x0,f(x)2(x)23(x)12x23x1.由于f(x)是奇函数,故f(x)f(x),所以f(x)2x23x1,x0.(3)函数f(x)在R上的解析式为f(x)1本题(1)在求解时,常犯f(0)1的错误2已知函数奇偶性求解析式的步骤一般步骤3若函数f(x)的定义域内含有0且为奇函数时,则必有f(0)0,但若为偶函数,未必有f(0)0.本例中若把“奇函数”换成“偶函数”,求x0时f(x)的解析式【解

9、】设x0,f(x)2(x)23(x)12x23x1.f(x)是偶函数,f(x)f(x),f(x)2x23x1,x0.忽略函数的定义域致误判断函数f(x)的奇偶性【错解】因为f(x)f(x),所以f(x)是偶函数【错因分析】错解中没有判断函数f(x)的定义域是否关于原点对称,而直接应用定义判断奇偶性【防范措施】1.在判断函数奇偶性时,务必树立定义域优先的原则2在定义域关于原点对称的前提下,判断f(x)同f(x)的关系【正解】由题意,得解得x1,即f(x)的定义域为1,),因为f(x)的定义域不关于原点对称,所以f(x)既不是奇函数,也不是偶函数1奇偶性是函数“整体”性质,只有对函数f(x)定义域

10、内的每一个值x,都有f(x)f(x)(或f(x)f(x),才能说f(x)是奇函数(或偶函数)2函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.1函数f(x),x(0,1)是()A奇函数 B偶函数C非奇非偶函数 D既是奇函数又是偶函数【解析】f(x)的定义域不关于原点对称,函数不具有奇偶性,是非奇非偶函数【答案】C2函数f(x)x2的图象()A关于x轴对称B关于y轴对称C关于原点对称D关于yx对称【解析】f(x)(x)2x2f(x),f(x)为偶函数,图象关于y轴对称【答案】B3已知函数f(x)是定义在区间a1,2

11、a上的奇函数,则实数a的值为()A0B1 C.D不确定【解析】奇函数f(x)的定义域为a1,2a,a12a0,a.【答案】C4函数yf(x)是(,)上的偶函数,当x0时f(x)x22x3,求函数yf(x)的解析式【解】令x0,故f(x)(x)22(x)3x22x3.又f(x)为偶函数,所以f(x)f(x),故f(x)x22x3,f(x)一、选择题1下列图象表示的函数中具有奇偶性的是()【解析】选项A中的图象关于原点或y轴均不对称,故排除;选项C、D中的图象所示的函数的定义域不关于原点对称,不具有奇偶性,故排除;选项B中的图象关于y轴对称,其表示的函数是偶函数故选B.【答案】B2已知f(x)是奇

12、函数,且f(a)2,则f(a)()A2B2C2D0【解析】f(a)f(a)2.【答案】B3下面为偶函数的是()Ayx2(x0)B(x1) Cy0Dy|x|(x0)【解析】对于选项A、D,其定义域不关于原点对称,故其为非奇非偶函数;又选项B中f(1)0,而f(1)无意义,故选项B也是非奇非偶函数;对于选项C,无论x取何值都满足f(x)f(x)0.【答案】C4已知f(x)是定义在R上的奇函数,当x0时,f(x)()Axx2Bxx2Cxx2Dxx2【解析】当x0时,x0时,f(x)2x21,那么f(1)_.【解析】f(x)是奇函数,f(1)f(1)(2121)1.【答案】17若y(m1)x22mx3

13、是偶函数,则m_.【解析】函数y(m1)x22mx3为偶函数,f(x)f(x),即(m1)x22mx3(m1)x22mx3,2m2m,得m0.【答案】08设偶函数f(x)的定义域为R,当x0,)时,f(x)是增函数,则f(2),f(),f(3)的大小关系是_【解析】因为当x0,)时,f(x)是增函数,所以有f(2)f(3)f()又f(x)是R上的偶函数,故f(2)f(2),f(3)f(3),从而有f(2)f(3)f()【答案】f(2)f(3)0时,x0即f(x)f(x)(x)24(x)3x24x3,f(x)(2)图象如图所示,函数f(x)的单调递增区间为2,0和2,)(写成开区间也可以)(3)值域为1,311设函数f(x)是定义在R上的奇函数,且在区间(,0)上是减函数,实数a满足不等式f(3a2a3)f(3a22a),求实数a的取值范围【解】f(x)在区间(,0)上是减函数,f(x)的图象在y轴左侧递减又f(x)是奇函数,f(x)的图象关于原点中心对称,则在y轴右侧同样递减又f(0)f(0),解得f(0)0,所以f(x)的图象在R上递减f(3a2a3)f(3a22a),3a2a33a22a,解得a1. 实数a的取值范围为(1,).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3