ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:699.59KB ,
资源ID:938043      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-938043-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版八年级数学上册第一章勾股定理重点解析试卷(含答案详解).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

北师大版八年级数学上册第一章勾股定理重点解析试卷(含答案详解).docx

1、北师大版八年级数学上册第一章勾股定理重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,P是等边三角形内的一点,且,以为边在外作,连接,则以下结论中不正确的是()ABCD2、如图所示的网格是正方

2、形网格,A,B,C,D是网格线交点,则与的大小关系为()ABCD无法确定3、九章算术中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺问折高者几何?意思是:一根竹子,原高一丈(一丈10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为()ABCD4、如图,长方形中,将此长方形折叠,使点与点重合,折痕为,则的长为()A12B8C10D135、如图,在ABC中,BAC=90,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为()A5B9C16D256、下列各组数:3、4、54、5、62.5、6、6.58、1

3、5、17,其中是勾股数的有()A4组B3组C2组D1组7、如图,OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且ABx轴,若AB=6,OA=OB=5,则点A的坐标是()ABCD8、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形若AB3cm,则阴影部分的面积为()A1cm2B2cm2Ccm2Dcm29、如图,正方形ABCD中,AB12,将ADE沿AE对折至AEF,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是()A2B3C4D510、我国古代数学著作九章算术中有这样一个问题:“今有方池

4、一丈,葭生其中央,出水一 尺,引葭赴岸,适与岸齐水深、葭长各几何? ”其大意是:如图,有一个水池,水面是 一个边长为 10 尺 (丈、尺是长度单位,1 丈10 尺) 的正方形,在水池正中央有一根芦苇, 它高出水面 1 尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水 的深度与这根芦苇的长度分别是多少?若设这跟芦苇的长度为 x 尺,根据题意,所列方程正 确的是()A102(x1)2x2B102(x1)2 (x1)2C52(x1)2x2D52(x1)2 (x1)2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,于点DE为线段BD上一点,连结CE,

5、将边BC沿CE折叠,使点B的对称点落在CD的延长线上若,则的面积为_2、如图,在正方形网格中,点A,B,C,D,E是格点,则ABDCBE的度数为_3、在RtABC中,C90,AC9,AB15,则点C到AB的距离是_4、如图,在的正方形网格中,每个小正方形的顶点称为格点,点、均在格点上,则_5、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_尺.三、解答题(5

6、小题,每小题10分,共计50分)1、算法统宗是中国古代数学名著,作者是我国明代数学家程大位在算法统宗中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,五尺人高曾记仕女佳人争蹴,终朝笑语欢嬉良工高士素好奇,算出索长有几”(注:1步5尺)译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,问绳索有多长”2、如图,已知等腰ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm(1)判断BCD的形状,并说明理由;(2)求ABC的周长3、如图,在一次地震中,一棵垂直于地

7、面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?4、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中ABAC,由于种种原因,由C到A的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米(1)问CH是不是从村庄C到河边的最近路,请通过计算加以说明;(2)求原来的路线AC的长5、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控

8、措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?-参考答案-一、单选题1、C【解析】【分析】根据ABC是等边三角形,得出ABC=60,根据BQCBPA,得出CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,求出PBQ=60,即可判断A;根据勾股定理的逆定理即可判断B;根据BPQ是等边三角形,PCQ是直角三角形即可判断D;求出APC=150-QPC,和PC2QC,可得

9、QPC30,即可判断C【详解】解:ABC是等边三角形,ABC=60,BQCBPA,CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,PBQ=PBC+CBQ=PBC+ABP=ABC=60,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,PQ2+QC2=PC2,PQC=90,所以B正确,不符合题意;PB=QB=4,PBQ=60,BPQ是等边三角形,BPQ=60,APB=BQC=BQP+PQC=60+90=150,所以D正确,不符合题意;APC=360-150-60-QPC=150-QPC,PC=5,QC=PA=3,PC2QC,PQC=90

10、,QPC30,APC120所以C不正确,符合题意故选:C【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识2、C【解析】【分析】根据每个小网格都为正方形,设每个网格为1,由勾股定理可以求出AD、AC、 CD的长,再由勾股定理的逆定理得到ACD为等腰直角三角形,同理可得ABC为等腰直角三角形,即BAC= DAC【详解】解:如图,设正方形每个网格的边长都为1,连接CD、BC,则,为等腰直角三角形,同理:,为等腰直角三角形,故选:C【考点】本题考查勾股定理的性质、勾股定理的逆定理以及等腰直角三角形的判定,解本题的关键要掌握勾股定理

11、及逆定理的基本知识3、D【解析】【分析】先画出三角形,根据勾股定理和题目设好的未知数列出方程【详解】解:如图,根据题意,设折断处离地面的高度是x尺,即,根据勾股定理,即故选:D【考点】本题考查勾股定理的方程思想,解题的关键是根据题意利用勾股定理列出方程4、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13【详解】设BE为x,则DE为x,AE为25-x四边形为长方形EAB=90在中由勾股定理有即化简得解得故选:D【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而

12、可以求解5、D【解析】【分析】设,根据勾股定理可得,即可求解【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键6、C【解析】【详解】解:32+42=52,符合勾股数的定义;42+5262,不符合勾股数的定义;2.5和6.5不是正整数,不符合勾股数的定义;82+152=172,符合勾股数的定义,是勾股数的有:,共2组,故选:C7、D【解析】【分析】利用HL证明ACOBCO,利用勾股定理得到OC=4,即可求解【详解】解:ABx轴,ACO=BCO=90,OA=OB,OC=OC,ACOBCO(HL),AC=BC=AB=3,OA=5,

13、OC=4,点A的坐标是(4,3),故选:D【考点】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题8、D【解析】【分析】由菱形的性质得到FCOECO,进而证明ECOECBFCO30,2BECE,利用勾股定理得出BC,再解得菱形的面积为2 ,最后由阴影部分的面积 S菱形AECF解题【详解】解:四边形AECF是菱形,AB3,假设BEx,则AE3x,CE3x,四边形AECF是菱形,FCOECO,ECOECB,ECOECBFCO30,2BECE,CE2x,2x3x,解得:x1,CE2,利用勾股定理得出:BC2+BE2EC2,BC,又AEABBE312,则菱形

14、的面积是:AEBC2 阴影部分的面积 S菱形AECF cm2故选:D【考点】本题考查菱形的性质、勾股定理、含30直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键9、C【解析】【分析】连接AG,证明ABGAFG,得到FGBG,ADE沿AE对折至AEF,则EFDE,设DEx,则EFx,EC12x,则RtEGC中根据勾股定理列方程可求出DE的值【详解】如图,连接AG,四边形ABCD是正方形,ABCD90,ABBCCDAD12ADE沿AE对折至AEF,EFDE,AFAD,AFAD,ABAD,AFAB,又AG是公共边,ABGAFG(HL),G刚好是BC边的中点,BGFG, 设DEx,则EFx,

15、EC12x,在RtEGC中,根据勾股定理列方程:62(12x)2(x6)2解得:x4所以ED的长是4,答案选C【考点】本题考查了正方形和全等三角形的综合知识,根据勾股定理列方程是本题的解题关键10、C【解析】【分析】设这跟芦苇的长度为 x 尺,根据勾股定理,即可求解【详解】解:设这跟芦苇的长度为 x 尺,根据题意得:52(x1)2 x2故选:C【考点】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键二、填空题1、【解析】【分析】在ABC中由等面积求出,进而得到,设BE=x,进而DE=DB-BE=,最后在中使用勾股定理求出x即可求解【详解】解:在中由勾股定理可知:,在中由勾

16、股定理可知:,设BE=x,由折叠可知:BE=BE,且DE=DB-BE=,在中由勾股定理可知:,代入数据:,解得,故答案为:【考点】本题考查了勾股定理求线段长、折叠的性质等,解题的关键是掌握折叠的性质,熟练使用勾股定理求线段长2、45【解析】【分析】取网格点M、N、F,连接AM、AN、BM、MF、BN,根据网格线可得到ABD+CBE=MAB,再根据勾股定理的逆定理证明ABM是直角三角形,且AM=BM,即可得解【详解】取网格点M、N、F,连接AM、AN、BM、MF、BN,如图,根据网格线可知NB=1=MF,AN=3,AF=2,由网格图可知CBE=FAM,ABD=NAB,则ABD+CBE=MAB,在

17、RtANB中,有,同理可求得:,ABM是直角三角形,且AM=BM,MAB=45,即:ABD+CBE=45,故答案为:45【考点】本题考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知识,求得ABD+CBE=MAB是解答本题的关键3、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在RtABC中,C90,则有AC2+BC2=AB2AC=9,BC=12,AB=在RtABC中,C=90,则有AC2+BC2=AB2,AC=9,AB=15,BC=12,SABC=ACBC=ABh,h=故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角

18、形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键4、45#45度【解析】【分析】取正方形网格中格点Q,连接PQ和BQ,证明AQB=90,由勾股定理计算PQ=QB,进而得到QPB为等腰直角三角形,PAB+PBA=QPF+BPF=QPB=45即可求解【详解】解:取正方形网格中格点Q,连接PQ和BQ,如下图所示:AE=PF,PE=QF,AEP=PFQ=90,APEPQF(SAS),PAB=QPF,PFBE,PBA=BPF,PAB+PBA=QPF+BPF=QPB,又QA=2+4=20,QB=2+1=5,AB=5=25,QA+QB=20+5=25=AB,QAB为直角三角形,AQB=90,PQ

19、=2+1=5=QB,PQB为等腰直角三角形,QPB=QBP=(180-90)2=45,PAB+PBA=QPF+BPF=QPB=45,故答案为:45【考点】本题考查了勾股定理及逆定理、三角形全等的判定等,熟练掌握勾股定理及逆定理是解决本类题的关键5、25.【解析】【详解】解:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题.根据勾股定理可求出葛藤长为(尺)故答案为:25三、解答题1、尺【解析】【分析】设秋千的绳索长为x尺,根据题意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可【详解】解:设秋千的绳索长为x尺,根

20、据题意可列方程为:x2=102+(x-4)2,解得:x=,秋千的绳索长为尺【考点】此题主要考查了勾股定理的应用,关键是正确理解题意,表示出AB、AC的长,掌握直角三角形中两直角边的平方和等于斜边的平方2、 (1)BDC为直角三角形,理由见解析;(2)ABC的周长为=cm【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以BDC为直角三角形;(2)由此可求出AC的长,周长即可求出(1)解:BDC为直角三角形,理由如下,BC=10cm,CD=8cm,BD=6cm,而102=62+82,BC2=BD2+CD2BDC为直角三角形;(2)解:设AB=xcm

21、,等腰ABC,AB=AC=x,则AD=x-6,AB2=AD2+BD2,即x2=(x-6)2+82,x=,ABC的周长=2AB+BC=(cm)【考点】本题考查了勾股定理的逆定理,关键是根据等腰三角形的性质、勾股定理以及逆定理的应用解答3、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方程求解即可.【详解】解:设,在中,答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键直角三角形两条直角边的平方和等于斜边的平方 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解有时也可以利用勾股定理列方程求解4、(1)是,理由见解析

22、;(2)2.5米【解析】【分析】(1)先根据勾股定理逆定理证得RtCHB是直角三角形,然后根据点到直线的距离中,垂线段最短即可解答;(2)设ACABx,则AHx1.8,在RtACH中,根据勾股定理列方程求得x即可【详解】(1),即,RtCHB是直角三角形,即CHBH,CH是从村庄C到河边的最近路(点到直线的距离中,垂线段最短);(2)设ACABx,则AHx1.8,在RtACH,即 ,解得x2.5,原来的路线AC的长为2.5米【考点】本题主要考查了勾股定理的应用,灵活应用勾股定理的逆定理和定理是解答本题的关键5、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间【详解】解:(1)村庄能听到宣传,理由:村庄到公路的距离为600米1000米,村庄能听到宣传;(2)如图:过点作于点,假设当宣讲车行驶到点开始影响村庄,行驶点结束对村庄的影响,则米,米,(米),米,影响村庄的时间为:(分钟),村庄总共能听到8分钟的宣传【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1