1、七年级数学上册第三章整式及其加减章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、多项式a(bc)去括号的结果是()AabcBa+bcCa+b+cDab+c2、下列计算的结果中正确的是()A6a22
2、a24Ba+2b3abC2xy32y3x0D3y2+2y25y43、如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A110B168C212D2224、下列说法中正确的是()A是单项式B是单项式C的系数为-2D的次数是35、已知是关于,的单项式,且这个单项式的次数为5,则该单项式是()ABCD6、已知与的和是单项式,则等于()AB10C12D157、语句“比的小的数”可以表示成()ABCD8、下列计算正确的是()ABCD9、当x=-1时,代数式2ax33bx+8的值为18,那么,代数式9b6a+2=()A28B28C32D3210、下列各组中的两项,不是同类项的
3、是()A-x2y和2x2yB23和32C-m3n2与m2n3D2R与2R第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知多项式x|m|+(m2)x10是二次三项式,m为常数,则m的值为_2、某市出租车收费标准为:起步价为8元,3千米后每千米的价格为2.5元,在计价器最终所显示数字的基础上再加元燃油附加费,小赵乘坐出租车走了千米,则小赵应该共付车费_元(用含和的代数式表示)3、如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,按这样的方法拼成的第个正方形比第n个正方形多_个小正方形4、多项式是关于的四次三项式,则_5
4、、若,a,b互为倒数,则的值是_三、解答题(5小题,每小题10分,共计50分)1、已知:,求的值2、已知关于x,y的多项式x4(m2)xnyxy23(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?3、已知,小红错将“”看成了“”,算得结果为(1)求;(2)小军跟小红说:“的大小与取值无关”,小军的说法对吗?为什么?4、如图图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火柴棒,图案需15根火柴棒,图案需15根火柴棒,(1)按此规律,图案需_根火柴棒;(2)用含n的代数式表示第n个图案需根火柴棒根数5、观察下列等式:(1)请写出第四个等式:_(2)观察上述等
5、式的规律,猜想第n个等式(用含n的式子表示)-参考答案-一、单选题1、D【解析】【分析】根据去括号的法则:括号前是“”时,把括号和它前面的“”去掉,原括号里的各项都改变符号,进行计算即可【详解】 ,故选:D【考点】本题主要考查去括号,掌握去括号的法则是解题的关键2、C【解析】【分析】直接利用合并同类项法则计算得出答案【详解】A、6a22a24a2,故此选项错误;B、a+2b,无法计算,故此选项错误;C、2xy32y3x0,故此选项正确;D、3y2+2y25y2,故此选项错误故选:C【考点】本题考查了整式的运算问题,掌握合并同类项法则是解题的关键3、C【解析】【分析】观察不难发现,左上角、左下角
6、、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解【详解】解:根据排列规律,12下面的数是14,12右面的数是16,8240,22462,44684,m161412212,故选:C【考点】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键4、D【解析】【分析】根据单项式的定义,单项式系数、次数的定义来求解单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数【详解】A.是多项式,故本选项错误;B. 不是整式,所以不是是单项式,故本选项错误;C. 的系数为,
7、故本选项错误; D. 的次数是3,正确.故选:D.【考点】考查了单项式的定义确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键5、C【解析】【分析】先根据单项式的次数计算出m的值即可【详解】解:已知 mx2ym+1 是关于 x , y 的单项式,且的次数为5,即该单项式为故选:C【点评】本题考查了单项式的系数、次数的概念;正确理解单项式的系数和次数是解决问题的关键6、B【解析】【分析】由同类项的含义可得:,再求解,再代入代数式求值即可得到答案.【详解】解:因为与的和是单项式,所以它们是同类项,所以,解得所以故选:【考点】本题考查的是同类项的含义,
8、一元一次方程组的解法,代数式的值,掌握同类项的概念是解题的关键.7、A【解析】【分析】根据题目中的数量关系解答即可【详解】解:的是,“比的小的数”可以表示成故选A【考点】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式解答本题的关键是仔细读题,找出题目所给的数量关系8、A【解析】【分析】根据合并同类项法则计算即可判断【详解】解:A、,故正确;B、,故错误;C、不能合并,故错误;D、,故错误;故选A【考点】本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则9、C【解析】【分析】首先根据当x1时,代数式2ax3-3bx+8的值
9、为18,求出-2a+3b的值为10再把9b-6a+2改为3(-2a+3b)+2,最后将-2a+3b的值代入3(-2a+3b)+2中即可【详解】解:当x=-1时,代数式2ax3-3bx+8的值为18,-2a+3b+8=18,-2a+3b=10,则9b-6a+2,=3(-2a+3b)+2,=310+2,=32,故选:C【考点】此题主要考查代数式求值,掌握整体代入的思想是解答本题的关键10、C【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)即可作出判断【详解】解:A、-x2y和2x2y所含字母相同,相同字母的指数相同,是同类项;B、23和32,都是整数,是同类项;C、-m3n2与
10、m2n3,所含字母相同,相同字母的指数不同,不是同类项;D、2R与2R,所含字母相同,相同字母的指数相同,是同类项;故选C【考点】本题考查了同类项定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点二、填空题1、-2【解析】【详解】因为多项式x|m|(m2)x10是二次三项式,可得:m20,|m|=2,解得:m=2,故答案为:22、【解析】【分析】费用为起步价+行驶路程费用+燃油附加费计算即可【详解】根据题意,得总费用为:8+(x-3)=,故答案为:【考点】本题考查了代数式的列法,熟练掌握列代数式的方法是解题的关键3、2n+3【解析】【
11、分析】首先根据图形中小正方形的个数规律得出变化规律,进而得出答案【详解】解:第一个图形有22=4个正方形组成,第二个图形有32=9个正方形组成,第三个图形有42=16个正方形组成,第n个图形有(n+1)2个正方形组成,第n+1个图形有(n+2)2个正方形组成(n+2)2-(n+1)2=2n+3故答案为:2n+3【考点】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键4、【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可【详解】解:多项式2x5是关于x的四次三项式,m14,解得m5,故答案为:5【考点】此题考查的是多项式的次数,掌握多项式的次数的定义是
12、解决此题的关键5、7【解析】【分析】根据a,b互为倒数,可得ab=1;然后把,ab=1代入,计算即可【详解】解:a,b互为倒数,ab=1,又,=4+51=2+5=7故答案为7【考点】本题考查代数式求值、倒数的概念、整体代入的思想,解题的关键是要明确:互为倒数的两个数的乘积是1三、解答题1、;【解析】【分析】先根据绝对值和平方的非负性求出x,y,再根据整式的混和运算法则化成最简,然后代入数值计算即可【详解】解:,解得:,原式当,时,原式【考点】本题主要考查了整式的化简求值,根据非负性求出x,y的值是解题的关键2、(1)n4,m2;(2)m2,n为任意实数【解析】【分析】(1)根据多项式是五次四项
13、式可知n15,m20,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m20,n为任意实数【详解】解:(1)多项式是五次四项式,n15,m20,n4,m2;(2)多项式是四次三项式,m20,n为任意实数,m2,n为任意实数【考点】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键3、 (1)(2)对,理由见解析【解析】【分析】(1)将错就错,列出关系式,去括号,合并同类项即可求得B;(2)把A和B代入中化简,根据结果与c的取值关系判断即可(1)根据题意:,即;(2)小军的说法对,理由:,结果不含c,即的大小与取值无关,故小军的说法对【考点】本题考查整式的加减,熟练掌握去括号法
14、则与合并同类项是解题的关键4、 (1)50(2)7n+1【解析】【分析】(1)根据图案、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,可得出图案需火柴棒:8+76=50根;(2)根据(1)的规律,可知第n个图案需火柴棒8+7(n-1)=7n+1根(1)解:图案需火柴棒:8根;图案需火柴棒:8+7=15根;图案需火柴棒:8+7+7=22根;图案需火柴棒:8+76=50根; 故答案为:50;(2)解:由(1)中规律:图案n需火柴棒:8+7(n-1)=7n+1根;故答案为:7n+1;【考点】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的
15、部分和变化的部分,变化部分是以何种规律变化5、(1);(2)【解析】【分析】(1)把前三个等式都看作减法算式的话,每个算式的被减数分别是1,2,3,减数的分母分别是6=1+5,7=2+5,8=3+5,减数的分子分别是5=51,10=52,15=53,差分别是被减数的平方和以减数的分母作分母,以1作分子的分数的差;据此判断出第四个等式的被减数是4,减数的分母是9,分子是5的4倍,差等于4与的乘积;(2)根据上述等式的规律,猜想第n个等式为:=,然后把等式的左边化简,根据左边=右边,证明等式的准确性即可【详解】解:(1)把前三个等式左边都看作减法算式的话,每个算式的被减数分别是1,2,3,减数的分母分别是6=1+5,7=2+5,8=3+5,减数的分子分别是5=51,10=52,15=53;右边分别是被减数的平方和以减数的分母作分母,以1作分子的分数的差;据此判断出第四个等式的被减数是4,减数的分母是9,分子是5的4倍,差等于4与的乘积;第四个等式为:442; (2)猜想:=(其中n为正整数)验证:n,所以左式右式,所以猜想成立【考点】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出::第n个等式为:=
Copyright@ 2020-2024 m.ketangku.com网站版权所有