ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:315.50KB ,
资源ID:931562      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-931562-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015-2016学年高中数学新人教A版必修2 第一章 第三节 空间几何体的表面积和体积(4)教学设计.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015-2016学年高中数学新人教A版必修2 第一章 第三节 空间几何体的表面积和体积(4)教学设计.doc

1、1.3空间几何体的表面积与体积(第4课时) 设计者:田许龙教学内容球的体积和表面积教学目标知识与技能1.外接球的表面积和体积公式的应用.2.通过对与球组合体球体的研究,掌握内切球的表面积和体积的求法。3.掌握与球有关的几何体的几何量的求法。4.培养学生空间想象能力和思维能力。过程与方法 通过对几何体的内切球、外接球有关的几何体的求法研究,培养学生学会观察、分析、推理、论证的思维方法,培养学生空间想象能力,领悟数形结合的数学思想。情感、态度与价值观 通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯.教学重点与球有关的几何体的表面积

2、和体积公式的应用.教学难点关于球的组合体的计算教学方法自主学习、分组讨论法、师生互动法。教学准备导学、课件。教学步骤教什么怎样教如何组织教学一、温故(情境导入)(5分钟)复习球的相关概念、公式新课引入,通过对球及球的相关概念以及球的表面积和体积公式的回顾,引出与球有关的几何体的表面积及体积。(出示课件1)1. 球的半径为R,它的体积和表面积只与半径R有关,是以R为自变量的函数.事实上,如果球的半径为R,那么球的表面积为S=4R2,体积为.球的性质:(1)球心和截面圆心的连线垂直于截面。(如上左图)(2)讨论:()若d=0则r=R.这时截得的圆叫大圆;()若0dR,则这时截得的圆叫小圆;()若d

3、=R,则r=0,和球只有一个公共点,此平面与球相切。 同学们,我们已经学习了球面、球体、及球的表面积及体积公式等相关知识,要求大家掌握概念、公式,并且加深对球心、截面、半径的理解,利用转化为直角三角形的方法找到它们之间的关系,看多媒体(出示课件1)二、知新(自主学习合作探究展示能力)(35分钟)长方体、正方体相接或相切球问题。看书两分钟,了解与球有关的几何体的面积、体积等几何量的求法;掌握长方体、正方体相接或相切球问题。出示课件2-1思考:1.如果一个长方体的一个顶点上的棱长分别是3,4,5,且它的八个顶点都在同一个球面上,那么这个球的表面积是 50 ,体积是 。2.如果是一个球在棱长是4的正

4、方体内,且和正方体的八个面都相切,那么这个球的表面积是 16 ,体积是 3.如果一个球和棱长为4的正方体的八条棱都相切,那么这个球的表面积是 32 ,体积是 同学们,现在看完书并解决以下几个问题:(1)长方体的外接球问题?(2)正方体的内切球问题?(3)与正方体各条棱都相切的球的问题?一会儿找学生回答。刚才几个同学回答的对吗?请讨论。1.注意:球心在长方体的体对角线上2.注意:正方体的棱长是球的直径 3.注意:正方体的面对角线是球的直径现在我们看多媒体(出示课件2-1) 四面体的外接球问题 学生思考从球与正方体、长方体的组合体类比四面体的外接球问题。教师巡回指导,然后各个学习小组选一名学生代表

5、回答,之后老师出示课件2-2。题目:求棱长为a的正四面体的外接球与内切球的半径外接球半径 ,内切球半径同学们,前边我们学习了长方体、正方体的外接球,正方体的内切球,用类比的方法求正四面体的外接球和内切球,考虑外接球和内切球半径与正四面体的棱长。思考后,学习小组进行讨论回答,回答的很好,请看多媒体(出示课件2-2) 例题解答 学生看导学案完成例题,难度大的小组讨论,完成导学内容,并派代表说出小组结论,教师参与小组讨论指导个别小组或学生并汇总结果并反馈。 之后,老师出示课件3例题.有一个轴截面为正三角形的圆锥容器,内放一个半径为R的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后

6、水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决.解:作出圆锥和球的轴截面图如图所示,圆锥底面半径,圆锥母线,圆锥高为, ,球取出后,水形成一个圆台,下底面半径,设上底面半径为r,, ,解得, ().。 答:容器中水的高度为()R. 前面我们学习了长方体、正方体相接或相切球问题,四面体的外接球问题求法,接下来大家看导学案的例题并给出解答。好了,例题是一个圆锥与球的相切以及圆台的综合题目、可先求出圆锥的底面半径和高,再求圆锥和球的体积,之后由圆台的体积公式求解,四面体的外接球问题看多媒体订正自己的答案。看多媒体(出示课

7、件3) 巩固提高 学生先独立思考完成导学案,之后小组交流老师参与其中指导个别组和学生。然后教师出示课件4,学生与课件内容对比,订正自己思路和步骤。 1.三个球半径之比是123,那么最大球的表面积是其余两个球的表面积之和的( B )A.1倍 B. 倍 C.2倍 D.3倍2.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深2cm的空穴,则该球的表面积为_400_cm2.接下来,考验大家的时候到了,请同学们独立思考完成题目,之后学习小组互相交流,看自己能否得到准确答案。这两个题目有一定难度,要认真思考,。分析;1利用球的表面积公式可以求解2这个题目考虑球缺的问题,由小圆半径和

8、小圆到到圆心的距离可求解。解这类题目需要发挥空间想象能力,使用补形(补成半球或球)来解决问题。好,请同学们看多媒体(课件4内容):课堂练习: 学生看书本36页复习题的8、9学生独立思考解决,后同桌交流,提问学生并师生一起得出准确答案。大家看课本36页复习题的8、9,独立思考后把答案写在书上,一会儿找几个同学分别说出答案。很好!三、总结(归纳总结课堂检测)(4分钟)总结、布置作业 学习总结: 提醒学生对本节课所学内容进行总结,(1)对学生出现的问题进行点拨;(2)强调本节课的重难点。对学习过程中出现的问题做好整理反思,教师出示课件5使全体学生记忆校对自己的总结. 同学们,这节课我们共同学习了:球

9、的表面积及体积的求法,大家根据例题和练习题总结一下求与球有关的组合体量时所采用的方法。好,看多媒体(出示课件5),和你的总结一样吗!同学们,求几何体表面积需要注意的问题:1、外接球问题;2内切球问题;3与球有关的组合体的求法:相切问题一般采用切割手段,外接问题考虑补形求球的直径。四、作业(布置作业)(1分钟)布置课后作业,提出拓展问题。 适当的布置课后作业。出示课件5 预习下一课空间点、直线、平面之间的位置关系 拓展问题:结合例题和练习题,思考与球其它组合体的几何量的求法。 同学们,根据我们今天学习的内容,课后完成作业:课后习题37页复习题B组第3、4题小题写在作业本上。 同时思考今天的拓展问题,将你的答案写在作业本上。 预习下一课时空间点、直线、平面之间的位置关系。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3