ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:116KB ,
资源ID:927840      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-927840-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年高中数学 第二章 推理与证明章末检测课时跟踪训练(含解析)新人教A版选修1-2.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年高中数学 第二章 推理与证明章末检测课时跟踪训练(含解析)新人教A版选修1-2.doc

1、章末检测(二)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列三句话按“三段论”模式排列顺序正确的是()ycos x(xR)是三角函数;三角函数是周期函数;ycos x(xR)是周期函数ABC D解析:显然是大前提,是小前提,是结论答案:D2用反证法证明命题“是无理数”时,假设正确的是()A假设是有理数 B假设是有理数C假设或是有理数 D假设是有理数解析:假设应为“不是无理数”,即“是有理数”答案:D3下列推理过程属于演绎推理的为()A老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B由112,1

2、322,13532,得出135(2n1)n2C由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D通项公式形如ancqn(cq0)的数列an为等比数列,则数列2n为等比数列解析:A是类比推理,B是归纳推理,C是类比推理,D为演绎推理答案:D4由“正三角形的内切圆切于三边的中点”可类比猜想:“正四面体的内切球切于四个面_”横线处可填的内容是()A各正三角形内一点B各正三角形的某高线上的点C各正三角形的中心D各正三角形外的某点解析:正三角形的边对应正四面体的面,边的中点对应正四面体的面正三角形的中心答案:C5观察下面图形的规律,在其右下角的空格内画上合适的图

3、形为()A BC D解析:由每一行中图形的形状及黑色图形的个数,则知A正确答案:A6.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,依此类推,如果一个六边形点阵共有169个点,那么它的层数为()A6 B7C8 D9答案:C7用反证法证明命题“若a2b20,则a,b全为0(a,bR)”,其反设正确的是()Aa,b至少有一个不为0 Ba,b至少有一个为0Ca,b全不为0 Da,b中只有一个为0解析:“a,b全为0”的反设应为“a,b不全为0”,即“a,b至少有一个不为0”答案:A8我们把平面几何里相似形的概念推广到空间:如果两个几何体大小不一定相等

4、,但形状完全相同,就把它们叫做相似体下列几何体中,一定属于相似体的有()两个球体;两个长方体;两个正四面体;两个正三棱柱;两个正四棱锥A4个 B3个C2个 D1个解析:类比相似形中的对应边成比例知,属于相似体答案:C9在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n2,则x,y中至少有一个大于1,在用反证法证明时,假设应为_解析:“至少有一个”的反面为“一个也没有”,即“x,y均不大于1”,亦即“x1且y1”答案:x,y均不大于1(或者x1且y1)14已知圆的方程是x2y2r2,则经过圆上一点M(x0,y0)的切线方程为x0xy0yr2.类比上述性质,可以得到椭圆1类似的

5、性质为_解析:圆的性质中,经过圆上一点M(x0,y0)的切线方程就是将圆的方程中的一个x与y分别用M(x0,y0)的横坐标与纵坐标替换故可得椭圆1类似的性质为:过椭圆1上一点P(x0,y0)的切线方程为1.答案:经过椭圆1上一点P(x0,y0)的切线方程为115如图,第n个图形是由正n2边形“扩展”而来(n1,2,3,),则第n2(n2)个图形中共有_个顶点解析:设第n个图形中有an个顶点,则a1333,a2444,an(n2)(n2)(n2),an2n2n.答案:n2n16若定义在区间D上的函数f(x)对于D上的n个值x1,x2,xn,总满足f(x1)f(x2)f(xn)f,称函数f(x)为

6、D上的凸函数现已知f(x)sin x在(0,)上是凸函数,则ABC中,sin Asin Bsin C的最大值是_解析:因为f(x)sin x在(0,)上是凸函数(小前提),所以(sin Asin Bsin C)sin(结论),即sin Asin Bsin C3sin.因此sin Asin Bsin C的最大值是.答案:三、解答题(共70分解答应写出文字说明、证明过程或演算步骤)17(10分)用综合法或分析法证明:(1)如果a,b0,则lg ;(2)22.证明:(1)当a,b0时,有,lg lg,lglg ab.(2)要证22,只要证()2(22)2,即22,这是显然成立的,所以,原不等式成立1

7、8(12分)已知等差数列an的公差为d,前n项和为Sn,an有如下性质:(m,n,p,qN*)通项anam(nm)d;若mnpq,则amanapaq;若mn2p,则aman2ap;Sn,S2nSn,S3nS2n构成等差数列类比上述性质,在等比数列bn中,写出相类似的性质解析:在等比数列bn中,公比为(0),前n项和为Sn,bn有如下性质:(m,n,p,qN*)通项bnbmnm;若mnpq,则bmbnbpbq;若mn2p,则bmbnb;Sn,S2nSn,S3nS2n(Sn0)构成等比数列19(12分)下列推理是否正确?若不正确,指出错误之处(1)求证:四边形的内角和等于360.证明:设四边形AB

8、CD是矩形,则它的四个角都是直角,有ABCD90909090360,所以四边形的内角和为360.(2)已知和都是无理数,试证:也是无理数证明:依题设和都是无理数,而无理数与无理数之和是无理数,所以必是无理数(3)已知实数m满足不等式(2m1)(m2)0,用反证法证明:关于x的方程x22x5m20无实根证明:假设方程x22x5m20有实根由已知实数m满足不等式(2m1)(m2)0,解得2m,而关于x的方程x22x5m20的判别式4(m24),2m,m24,0,即关于x的方程x22x5m20无实根解析:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形(2)使用的论据是“无理数与无理

9、数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法20(12分)已知实数x,且有ax2,b2x,cx2x1,求证:a,b,c中至少有一个不小于1.证明:假设a,b,c都小于1,即a1,b1,c1,则abc3.abc(2x)(x2x1)2x22x223,且x为实数,2233,即abc3,这与abc3矛盾假设不成立,原命题成立a,b,c中至少有一个不小于1.21(12分)设各项均为正数的数列an的前n项和为Sn,满足4Sna

10、4n1,nN*,且a2,a5,a14构成等比数列(1)证明:a2;(2)求数列an的通项公式;(3)证明:对一切正整数n,有0,a2.(2)当n2时,4Sn1a4(n1)1,4an4Sn4Sn1aa4,即aa4an4(an2)2,又an0,an1an2,当n2时,an是公差为2的等差数列又a2,a5,a14成等比数列aa2a14,即(a26)2a2(a224),解得a23.由(1)知,4a1a54,a11,又a2a1312,数列an是首项a11,公差d2的等差数列an2n1.(3)证明:1,因为ak2ak1或ak2ak136,所以2ak1是3的倍数,于是ak1是3的倍数类似可得,ak2,a1都是3的倍数从而对任意n1,an是3的倍数,因此M的所有元素都是3的倍数综上,若集合M存在一个元素是3的倍数,则M的所有元素都是3的倍数

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3