ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:312.50KB ,
资源ID:925692      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-925692-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017届高考数学(理)二轮复习(全国通用) 训练专题四 立体几何 第2讲 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017届高考数学(理)二轮复习(全国通用) 训练专题四 立体几何 第2讲 WORD版含答案.doc

1、1.(2016山东卷)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH平面ABC;(2)已知EFFBAC2,ABBC,求二面角FBCA的余弦值. (1)证明设FC中点为I,连接GI,HI,在CEF中,因为点G是CE的中点,所以GIEF.又EFOB,所以GIOB.在CFB中,因为H是FB的中点,所以HIBC,又HIGII,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.(2)解连接OO,则OO平面ABC.又ABBC,且AC是圆O的直径,所以BOAC.以O为坐标原点,建立如图所示的空间直角

2、坐标系Oxyz.由题意得B(0,2,0),C(2,0,0).过点F作FM垂直OB于点M,所以FM3,可得F(0,3).故(2,2,0),(0,3).设m(x,y,z)是平面BCF的一个法向量.由可得可得平面BCF的一个法向量m,因为平面ABC的一个法向量n(0,0,1),所以cosm,n.所以二面角FBCA的余弦值为.2.(2015山东卷)如图,在三棱台DEFABC中,AB2DE,G,H分别为AC,BC的中点.(1)求证:BD平面FGH;(2)若CF平面ABC,ABBC,CFDE, BAC45 ,求平面FGH与平面ACFD所成的角(锐角)的大小.(1)证明法一连接DG,CD,设CDGFO,连接

3、OH,在三棱台DEFABC中,AB2DE,G为AC的中点,可得DFGC,DFGC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OHBD,又OH平面FGH,BD平面FGH,所以BD平面FGH.法二在三棱台DEFABC中,由BC2EF,H为BC的中点,可得BHEF,BHEF,所以四边形BHFE为平行四边形,可得BEHF.在ABC中,G为AC的中点,H为BC的中点,所以GHAB.又GHHFH,所以平面FGH平面ABED.因为BD平面ABED,所以BD平面FGH.(2)解设AB2,则CF1.在三棱台DEFABC中,G为AC的中点,由DFACGC,可得四边形DGCF为平行四边

4、形,因此DGFC,又FC平面ABC,所以DG平面ABC.在ABC中,由ABBC,BAC45,G是AC中点.所以ABBC,GBGC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系Gxyz.所以G(0,0,0),B(,0,0),C(0,0),D(0,0,1).可得H,F(0,1),故,(0,1).设n(x,y,z)是平面FGH的一个法向量,则由可得可得平面FGH的一个法向量n(1,1,).因为是平面ACFD的一个法向量,(,0,0).所以cos,n.所以平面FGH与平面ACFD所成角(锐角)的大小为60.3.(2016四川卷)如图,在四棱锥PABCD中,ADBC,ADC

5、PAB90,BCCDAD.E为边AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角PCDA的大小为45,求直线PA与平面PCE所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M平面PAB),点M即为所求的一个点.理由如下:由已知,BCED,且BCED.所以四边形BCDE是平行四边形.从而CMEB.又EB平面PBE,CM平面PBE.所以CM平面PBE.(说明:延长AP至点N,使得APPN,则所找的点可以是直线MN上任意一点)(2)法一由已知,CDPA,CDAD,PAADA,所以CD

6、平面PAD.于是CDPD.从而PDA是二面角PCDA的平面角.所以PDA45.由PAAB,可得PA平面ABCD.设BC1,则在RtPAD中,PAAD2.作AyAD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0).所以(1,0,2),(1,1,0),(0,0,2).设平面PCE的法向量为n(x,y,z).由得设x2,解得n(2,2,1).设直线PA与平面PCE所成角为,则sin .所以直线PA与平面PCE所成角的正弦值为.法二由已知,CDPA,CDAD,PAADA,所以CD平面PAD.

7、从而CDPD.所以PDA是二面角PCDA的平面角.所以PDA45.设BC1,则在RtPAD中,PAAD2.过点A作AHCE,交CE的延长线于点H,连接PH.易知PA平面ABCD,从而PACE.且PAAHA,于是CE平面PAH.又CE平面PCE,所以平面PCE平面PAH.过A作AQPH于Q,则AQ平面PCE.所以APH是PA与平面PCE所成的角.在RtAEH中,AEH45,AE1,所以AH.在RtPAH中,PH.所以sinAPH.4.(2016浙江卷)如图,在三棱台ABCDEF中,平面BCFE平面ABC,ACB90,BEEFFC1,BC2,AC3.(1)求证:BF平面ACFD;(2)求二面角BA

8、DF的平面角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE平面ABC,且ACBC,所以AC平面BCK,因此BFAC.又因为EFBC,BEEFFC1,BC2,所以BCK为等边三角形,且F为CK的中点,则BFCK,且CKACC,所以BF平面ACFD.(2)解法一如图,延长AD,BE,CF相交于一点K,则BCK为等边三角形.取BC的中点O,连接KO,则KOBC,又平面BCFE平面ABC,所以KO平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系Oxyz.由题意得B(1,0,0),C(1,0,0),K(0,0,),A(1,3,0)

9、,E,F.因此,(0,3,0),(1,3,),(2,3,0).设平面ACK的法向量为m(x1,y1,z1),平面ABK的法向量为n(x2,y2,z2).由得取m(,0,1);由得取n(3,2,).于是,cosm,n.所以,二面角BADF的平面角的余弦值为.法二过点F作FQAK于Q,连接BQ.因为BF平面ACK,所以BFAK,则AK平面BQF,所以BQAK.所以BQF是二面角BADF的平面角.在RtACK中,AC3,CK2,得AK,FQ.在RtBQF中,FQ,BF,得cosBQF.所以,二面角BADF的平面角的余弦值为.5.(2016广州二模)如图,ABC和BCD所在平面互相垂直,且ABBCBD

10、2,ABCDBC120,E,F分别为AC,DC的中点.(1)求证:EFBC;(2)求二面角EBFC的正弦值.法一(1)证明由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系.易得B(0,0,0),A(0,1,),D(,1,0),C(0,2,0).因而E(0,),F,所以,(0,2,0),因此0.从而,所以EFBC.(2)解平面BFC的一个法向量为n1(0,0,1).设平面BEF的法向量n2(x,y,z),又,.由得其中一个n2(1,1).设二面角EBFC大小为,且由题意知为锐角,则cosn1

11、,n2,cos ,因此sin ,即所求二面角的正弦值为.法二(1)证明过E作EOBC,垂足为O,连接OF.由ABCDBC可证出EOCFOC.所以EOCFOC,即FOBC.又EOBC,EOFOO,EO,FO平面EFO,因此BC平面EFO,又EF平面EFO,所以EFBC.(2)解过O作OGBF,垂足为G,连接EG.由平面ABC平面BDC,从而EO平面BDC,BF平面BDC,BFEO,又OGBF,又EOOGO,所以BF平面EOG,又EG平面EOG,所以EGBF.因此EGO为二面角EBFC的平面角.在EOC中,EOECBCcos 30,由BGOBFC知,OGFC,因此tanEGO2,从而sinEGO,

12、即二面角EBFC的正弦值为.6.(2016北京二模)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥PABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:ABFG;(2)若PA底面ABCDE,且PAAE.求直线BC与平面ABF所成角的大小,并求线段PH的长.(1)证明在正方形AMDE 中,因为B是AM的中点,所以ABDE.又因为AB平面PDE,DE平面PDE,所以AB平面PDE.因为AB平面ABF,且平面ABF平面PDEFG,所以ABFG.(2)解因为PA底面ABCDE,所以PAAB,PAAE.如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),(1,1,0).设平面ABF的法向量为n(x,y,z),则即令z1,则y1. 所以n(0,1,1).设直线BC与平面ABF所成角为,则cosn,.sin ,因此直线BC与平面ABF所成角的大小为.设点H的坐标为(u,v,w).因为点H在棱PC上,所以可设(01),即(u,v,w2)(2,1,2),所以u2,v,w22.因为n是平面ABF的法向量,所以n0,即(0,1,1)(2,22)0.解得,所以点H的坐标为.所以PH2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3