ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:276.50KB ,
资源ID:923060      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-923060-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017届高三数学(理)高考二轮复习(课时作业)第三部分 专题一 空间想象能力 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017届高三数学(理)高考二轮复习(课时作业)第三部分 专题一 空间想象能力 .doc

1、限时规范训练1已知,是两个不同的平面,有下列三个条件:存在一个平面,;存在一条直线a,a;存在两条垂直的直线a,b,a,b.其中,所有能成为“”的充要条件的序号是()ABC D解析:对于,存在一个平面,则,反之也对,即“存在一个平面,”是“”的充要条件,所以对,可排除B,C;对于,存在两条垂直的直线a,b,则直线a,b所成的角为90,因为a,b,所以,所成的角为90,即,反之也对,即“存在两条垂直的直线a,b,a,b”是“”的充要条件,所以对,可排除A,选D.答案:D2某几何体的三视图如图所示,则该几何体的表面积为()A.5 B.C.6 D.5解析:由几何体的三视图知该几何体的上部是底面边长为

2、1、高为1的正四棱锥,侧面三角形的高为;下部是棱长为1的正方体;该几何体的表面积为141155,故选D.答案:D3.(2016天津模拟)如图为一个几何体的三视图,则该几何体的体积为()A6B6C3D3解析:分析三视图可知,该几何体是由一个长方体挖去半个圆柱而得到的,如图所示,因而其体积为211.5121.53.故选D.答案:D4.已知正四棱锥的底面边长为2a,其侧视图如图所示当正视图的面积最大时,该正四棱锥的表面积为()A8B88C8D48解析:由题意可知该正四棱锥的直观图如图所示其正视图与侧视图相同,设正四棱锥的高为h,则a2h24.故正视图的面积为S2ahah2,当且仅当ah时,S最大故该

3、正四棱锥的表面积为S表(2a)242a288.故选B.答案:B5已知直三棱柱的底面是等腰直角三角形,直角边长是1,且其外接球的表面积是16,则该三棱柱的侧棱长为()A. B2C4 D3解析:因为该直三棱柱的外接球的表面积是16,所以该球的半径为R2.又直三棱柱的底面是等腰直角三角形,直角边长是1,所以该三棱柱的底面斜边所在的侧面必过球心,故该三棱柱的侧棱长是2,故选A.答案:A6(2016昆明模拟)一个正三棱柱被平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A. B.C. D.解析:依题意,剩余部分所表示的几何体是从正三棱柱ABCA1B1C1(其底面边长是2)

4、中截去三棱锥EA1B1C1(其中E是侧棱BB1的中点),因此三棱锥EA1B1C1的体积为VEA1B1C121,剩余部分的体积为VVABCA1B1C1VEA1B1C122,因此截去部分体积与剩余部分体积的比值为,选A.答案:A7四棱锥PABCD的顶点P在底面ABCD上的投影恰好是A,其三视图如图所示,其中正视图与侧视图都是腰长为a的等腰三角形,则在四棱锥PABCD的任意两个顶点的连线中,互相垂直的异面直线共有_对解析:由题意可得PABC,PACD,ABPD,BDPA,BDPC,ADPB,即互相垂直的异面直线共有6对答案:68.如图所示,正方形ABCD中,E,F分别是AB,AD的中点,将此正方形沿

5、EF折成直二面角后,异面直线AF与BE所成角的余弦值为_解析:如图,取BC的中点H,连接FH,AH,BEFH,AFH即为异面直线AF与BE所成的角过A作AGEF于G,则G为EF的中点连接HG,HE,则HGE是直角三角形设正方形边长为2,则EF,HE,EG,HG,AH.由余弦定理知cos AFH.答案:9一个几何体的三视图如图所示,则这个几何体的表面积与其外接球的表面积的比值为_解析:该几何体是棱长为1的正八面体,其表面积为811sin 602,其外接球的半径为,故外接球的表面积为422,所以所求比值为.答案:10.如图所示,在直四棱柱ABCDA1B1C1D1中,DBBC,DBAC,点M是棱BB

6、1上一点(1)求证:B1D1平面A1BD;(2)求证:MDAC;(3)试确定点M的位置,使得平面DMC1平面CC1D1D.解析:(1)证明:由直四棱柱,得BB1DD1,且BB1DD1,所以四边形BB1D1D是平行四边形,所以B1D1BD.而BD平面A1BD,B1D1平面A1BD,所以B1D1平面A1BD.(2)证明:因为BB1平面ABCD,AC平面ABCD,所以BB1AC.又BDAC,且BDBB1B,所以AC平面BB1D1D.而MD平面BB1D1D,所以MDAC.(3)当点M为棱BB1的中点时,平面DMC1平面CC1D1D.证明如下:取DC的中点N,D1C1的中点N1,连接NN1交DC1于点O

7、,连接OM,BN(图略)因为N是DC的中点,BDBC,所以BNDC,所以BN平面DCC1D1.又O是NN1的中点,所以BMON且BMON,即四边形BMON是平行四边形,所以BNOM,所以OM平面CC1D1D.又OM平面DMC1,所以平面DMC1平面CC1D1D.11(2016湖南东部六校联考)如图,在直角梯形ABCD中,ABCD,ABAD,且ABADCD1.现以AD为一边向梯形外作矩形ADEF,然后沿边AD将矩形ADEF翻折,使平面ADEF与平面ABCD垂直(1)求证:BC平面BDE;(2)若点D到平面BEC的距离为,求三棱锥FBDE的体积解析:(1)证明:在矩形ADEF中,EDAD,因为平面

8、ADEF平面ABCD,所以ED平面ABCD,所以EDBC.又在直角梯形ABCD中,ABAD1,CD2,BDC45,所以BC,在BCD中,BDBC,CD2,所以BD2BC2CD2,所以BCBD,所以BC平面BDE.(2)由(1)得,平面DBE平面BCE,作DHBE于点H,则DH平面BCE,所以DH.在BDE中,BDDEBEDH,即DE(),解得DE1.所以VFBDEVBEFD111.12如图,四边形ABCD为等腰梯形,且ADBC,E为BC的中点,ABADBE.现沿DE将CDE折起成四棱锥CABED,点O为ED的中点(1)在棱AC上是否存在一点M,使得OM平面CBE?并证明你的结论;(2)若AB2

9、,求四棱锥CABED的体积的最大值解析:(1)存在,当M为AC的中点时,OM平面CBE.证明如下:连接MO、CO,取BC的中点F,连接EF、MF,如图所示MF为ABC的中位线,MFAB,且MFAB.在等腰梯形ABCD中,AD綊BE,四边形ABED为平行四边形,AB綊DE.O为ED的中点,MF綊OE,四边形EFMO为平行四边形,OMEF.EF平面CBE,OM平面CBE,OM平面CBE.(2)底面四边形ABED的面积不变,要使四棱锥CABED的体积最大,只需顶点C到平面ABED的距离最大,即只需平面CDE平面ABED.COED,平面CDE平面ABEDED,CO平面CDE,CO平面ABED,CO为四棱锥CABED的高,且CO.易知S四边形ABED2,四棱锥CABED的最大体积VmaxS四边形ABEDCO2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3