ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:2.56MB ,
资源ID:922100      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-922100-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(六年级数学上册典型例题系列之第五单元圆的面积问题提高部分(解析版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

六年级数学上册典型例题系列之第五单元圆的面积问题提高部分(解析版).docx

1、六年级数学上册典型例题系列之第五单元圆的面积问题提高部分(解析版)编者的话:六年级数学上册典型例题系列是基于教材知识点和常年考点考题总结和编辑而成的,其优点在于选题典型,考点丰富,变式多样。本专题是第五单元圆的面积问题提高部分,后续内容为圆的面积问题提高部分。本部分内容是在圆的面积问题基础部分内容基础上进行总结和编辑的,其内容主要以求不规则图形的面积为主,共介绍了六种常用的求阴影部分面积的方法,题型上多考察图形题和应用题,题目综合性较强,难度较大,建议作为重点部分讲解,共划分为七个考点,欢迎使用。【考点一】圆的面积与羊吃草问题。【方法点拨】该题型关键是画出羊吃草的范围图,较复杂的问题是由多个不

2、同部分的图形组成,需要分开计算面积。【典型例题1】把一只羊拴在一块长8m,宽6m 的长方形草地上,拴羊的绳长2m,那么这只羊吃到草的最大面积是多少平方米?如果要使羊吃草的面积最小,应该将羊拴在这个长方形草地的什么位置?解析:(1)最大面积:3.1422=12.56(平方米)(2)最小面积:3.1422=3.14(平方米)答:将羊拴在长方形的四个角上。【典型例题2】草场上有一个长20m,宽10m 的关闭着的羊圈,在羊圈的一角用长30m的绳子拴着一只羊(见右图),这只羊能够活动的范围有多大?解析:羊活动的范围受到绳长的影响,从图中可以分析得到,羊活动的范围由四分之三个半径为30米的圆的面积、四分之

3、一个半径为20米的圆、四分之一个半径为10米的圆的面积组成。【对应练习1】一只狗被拴在底座为边长3m的等边三角形建筑物的墙角上(如图),绳长是4m,求狗所能到的地方的总面积。解析:狗不能走到三角形里面去,如示意图,狗所到达的面积由300圆心角,半径为4m的扇形和两个半径为4-3=1米,圆心角为120的扇形组合而成的。3.1442+3.14(4-3)2=43.96(平方米)【对应练习2】草场上有一个木屋,木屋的地基是边长3米的正方形,A是木屋的一角,在A点有一木桩,在木桩上用6米长的绳子拴一匹马,这匹马的活动范围有多大?解析:画出示意图,【考点二】求阴影部分的面积一:四大基础衍生图形。【方法点拨

4、】【典型例题1】如图,求阴影部分的面积。(单位:厘米)解析:22-3.1422=0.86(平方厘米)【对应练习1】如图,互相垂直的两条线段均为10,求阴影部分的面积。解析:3.14102-10102=78.5-50=28.5【对应练习2】如图,互相垂直的两条线段均为10,求阴影部分的面积。解析:1010-3.14102=100-78.5=21.5【对应练习3】如图,互相垂直的两条线段均为4,求中间谷子部分的面积。解析:S=2S弓形=24.56=9.12【对应练习4】如图,求阴影部分的面积。解析:882=32【考点三】求阴影部分的面积二:S阴影=S1+S2。【方法点拨】 加法分割思路是把所求阴影

5、部分面积分割成几块能用公式计算的规则图形(三角形、正方形、长方形、平行四边形、梯形、圆、扇形),分别计算出面积,并相加得出阴影部分的面积。【典型例题1】如图,求阴影部分的面积。(单位:cm)解析:S阴影=S半圆+S三角形3.14(62)22+662=28.26+18=46.26(平方厘米)【对应练习1】求下面图形的面积。(单位:米) 解析:3.1412+22.5=8.14(平方米)【对应练习2】计算如图的面积。 解析:3.14(102)2+1020=78.5+200=278.5(平方米)【考点四】求阴影部分的面积三:S阴影=S整体-S空白。【方法点拨】减法拓展思路是把不规则图形阴影部分面积拓展

6、到包含阴影部分的规则图形中进行分析,通过计算这个规则图形的面积和规则图形中除阴影部分面积之外多余的面积,运用“总的”减去“部分的”方法解得答案。【典型例题1】求阴影部分的面积。解析:42=888-3.1442=13.76【对应练习1】边长为10米的正方形内的花园里,要在阴影部分种植玫瑰,种植玫瑰的面积有多大?解析:102=5(米) 10103.1455=21.5(平方米) 答:种植玫瑰的面积是 21.5 平方米。【对应练习2】求阴影部分的面积。解析:3.4222=6.28(平方厘米)【对应练习3】计算下面图形中阴影部分的面积。(单位:厘米)解析:3.14422-3.14(42)22-442=1

7、0.84(平方厘米)【考点五】求阴影部分的面积四:拼接法。【方法点拨】在部分扇形半径相等的情况下,可以通过移动扇形,把扇形拼接成一个整体。【典型例题】如图,是一个边长为5厘米的等边三角形,其面积为15平方厘米,在三角形中挖去三个同样的扇形,求剩下阴影部分的面积。解析:15-3.14(62)22=0.87(平方厘米)【对应练习1】如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米)解析:四边形的内角和为360,四个扇形正好可以拼成一个圆。S阴影=S梯形-S圆(4+7)42-3.14(42)2=22-12.56=9.44(平方厘米)【对应练习2】如图,三个扇形的半径相等,求阴影部分的面积。(

8、单位:厘米)解析:3.14322=14.13(平方厘米)【对应练习3】如图,图中四个等圆的周长都是50.24厘米,求阴影部分的面积。解析:50.243.142=8(厘米)3.1482=200.96(平方厘米)【考点六】求阴影部分的面积五:割补法。【方法点拨】移拼、割补的思路是把不规则的阴影面积通过学习割补,使之变为一个面积大小不变且能实施计算成面积相同的规则图形。【典型例题】求图中阴影部分的面积(单位:厘米)。解析:如图所示的特点,阴影部分的面积可以拼成圆的面积解:623.1428.26(平方厘米) 答:阴影部分的面积为 28.26 平方厘米【对应练习1】求下面图形中阴影部分的面积(单位:厘米

9、)。解析:662=18(平方厘米)【对应练习2】求下面图形中阴影部分的面积(单位:厘米)解析:10102=50(平方厘米)【对应练习3】求图中阴影部分的面积(单位:厘米)。解析:42=2(厘米)3.14424-422=8.56(平方厘米)【对应练习3】计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。解析:442=8【对应练习4】已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米,求阴影部分的面积。解析:36-24=10(平方厘米)【对应练习5】有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图)。图中黑点是这些圆的圆心。如果圆周率是3.1416,那么花瓣图形的

10、面积是多少平方厘米?解析:通过分割,补全,可得花瓣面积由一个正方形的面积+一个圆的面积。44+3.141612=19.1416(平方米)【考点七】求阴影部分的面积六:圆与长方形、正方形的结合。【方法点拨】注意分析长方形、正方形面积公式与圆的面积的相同之处。【典型例题】图中圆的周长是12.56cm,圆的面积正好等于长方形的面积,求阴影部分的面积。解析:12.563.142=2(cm)3.1422=9.42(平方厘米)【对应练习1】图中正方形的面积是6平方厘米,求圆的面积。解析:3.146=18.84(平方厘米)【对应练习2】已知长方形面积20平方厘米,求半圆的面积。解析:2rr=20,即r2=1

11、0半圆的面积:3.14102=15.7(平方厘米)【对应练习3】如图,已知阴影部分的小正方形面积是8平方分米,求图中圆的面积是多少平方分米?解析:根据题意,r2=8,所以圆的面积是3.148=25.12(平方分米)【对应练习4】如图,半圆S1的面积是14.13平方厘米,圆 S2的面积是19.625平方厘米。那么长方形(阴影部分的面积)是多少平方厘米?解析:S1的半径:14.1323.14=9(厘米);33=9S1的直径(正方形的边长):32=6(厘米)S2的半径:19.6253.14=6.25;2.52.5=6.25S2的直径(长方形的长):2.52=5(厘米)宽:6-5=1(厘米)面积:51=5(平方厘米)

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1