1、河北武邑中学教师课时教案备课人授课时间课题3.1.1 随机事件的概率课标要求了解随机事件、必然事件、不可能事件的概念.教学目标知识目标通过在抛硬币等试验获取数据, 了解随机事件、必然事件、不可能事件的概念技能目标通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.情感态度价值观通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.重点理解随机事件发生的不确定性和频率的稳定性.难点理解频率与概率的关系.教学过程及方法问题与情境及教师活动
2、学生活动一、导入新课:在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.(故事略) 在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.二、新课讲解:1、提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件
3、?请举例说明.注:以上3问初中已经学习了.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?观察:()掷一枚硬币,出现正面;()某人射击一次,中靶;()从标有号数1,2,3,4,5的5张标签中任取一张,得4号签;河北武邑中学教师课时教案教学过程及方法问题与情境及教师活动学生活动骰子,结果都是出现1点.你认为这枚骰子的质地均匀吗?为什么?这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.、活动做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性
4、中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法具体如下: 第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表:姓名试验次数正面朝上总次数正面朝上的比例思考: 试验结果与其他同学比较,你的结果和他们一致吗?为什么? 第二步 由组长把本小组同学的试验结果统计一下,填入下表.组次试验总次数正面朝上总次数正面朝上的比例思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么? 通过学生的实验,比较他们实验结果,让他们
5、发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5. 第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么? 第四步 把全班实验结果收集起来,也用条形图表示.思考: 这个条形图有什么特点? 引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可
6、以与第二章统计的内容相呼应,达到温故而知新的目的.河北武邑中学教师课时教案教学过程及方法问题与情境及教师活动学生活动 第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性 思考: 如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间0,1中的某个常数上.从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S下
7、,一定会发生的事件,叫相对于条件S的必然事件(certain event),简称必然事件.(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件(impossible event),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件(random event),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,表示.(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数na为事件A出现的频数(frequency
8、);称事件A出现的比例fn(A)=为事件A出现的频率(relative frequency);对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率(probability).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率. 频率是概率的近似值,随着试验次数的
9、增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.河北武邑中学教师课时教案教学过程及方法问题与情境及教师活动学生活动频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.三、课堂练习: 教材113页练习:1、2、3四、课堂小结:本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间0,1内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大.反之,概率越接近于0,事件A发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.教学小结(1)必然事件、不可能事件、随机事件(2)频率与概率的区别与联系:课后反思