1、高考资源网() 您身边的高考专家一、填空题1(2012广东高考改编)设集合U1,2,3,4,5,6,M1,3,5,则UM_.解析:因为集合U1,2,3,4,5,6,M1,3,5,所以2UM,4UM,6UM,所以UM2,4,6答案:2,4,62设SxN|0x4;AxN|0x4,则SA_.解析:由已知:S0,1,2,3,4,A1,2,3,SA0,4答案:0,43设UR,Ax|axb,UAx|x4,则ab_.解析:UR,Ax|axb,UAx|xa或b,又UAx|x4,a3,b4.ab7.答案:74设全集U2,3,a22a3,A|2a1|,2,UA5,则实数a的取值集合为_解析:UA5,5U,且5A,
2、a22a35,解得a2或a4.当a2时,|2a1|35,符合题意,当a4时,|2a1|95,但是9U,a的取值集合为2答案:25已知全集Ux|1x1,Ax|0x0.综上,0a1.答案:0a,AC,求a的取值范围解:(1)Ax|3x10,Bx|2x7,借助于数轴知UAx|x3,或x10,UBx|x2,或x7(2)要使AC,只需a3即可a的取值范围为a|a38已知集合Ax|2a2xa,Bx|1x2且ARB,求实数a的取值范围解:Bx|1x2,RBx|x1,或x2ARB,分A和A两种情况讨论(1)若A,此时2a2a,a2.(2)若A,则或a1.综上所述,a1或a2.9已知集合Ux|1x2,xP,Ax|0x2,xP,Bx|ax1,xP(1a1)(1)若PR,求UA中最大元素m与UB中最小元素n的差mn;(2)若PZ,求AB和UA中所有元素之和及U(AB)解:(1)由已知得UAx|1x0,或x2,UBx|1xa,或1x2,m2,n1;mn2(1)3.(2)PZ,Ux|1x2,xZ1,0,1,2,Ax|0x2,xZ0,1,B1或0,1AB0或AB,即AB中元素之和为0.又UA1,2,其元素之和为121.故所求元素之和为011.AB0,或AB,U(AB)1,1,2或U(AB)UU,1,2高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 ) 版权所有高考资源网