ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:145.50KB ,
资源ID:917133      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-917133-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省江阴市山观高级中学2016届高三数学一轮复习函数教学案:第6课时 对数函数.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省江阴市山观高级中学2016届高三数学一轮复习函数教学案:第6课时 对数函数.doc

1、第6课时 对数函数基础过关1对数:(1) 定义:如果,那么称 为 ,记作 ,其中称为对数的底,N称为真数. 以10为底的对数称为常用对数,记作_ 以无理数为底的对数称为自然对数,记作_(2) 基本性质: 真数N为 (负数和零无对数); ; ; 对数恒等式: (3) 运算性质: loga(MN)_; loga_; logaMn (nR). 换底公式:logaN (a0,a1,m0,m1,N0) .2对数函数: 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当_时,函数为减函数,当_时为增函数;4) 函数与函数 互为反函数. 1) 图象经过点( ),图象在 ;2)

2、 对数函数以 为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴);4) 函数ylogax与 的图象关于x轴对称 函数值的变化特征: 典型例题例1 计算:(1)(2)2(lg)2+lglg5+;(3)lg-lg+lg.解:(1)方法一 利用对数定义求值设=x,则(2+)x=2-=(2+)-1,x=-1.方法二 利用对数的运算性质求解= =(2+)-1=-1.(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1|=lg+(1-lg)=1.(3)原式=(lg32-lg49)-lg8+lg245= (5lg2-2lg7)-+ (2lg7+lg5)=lg2-lg7-2

3、lg2+lg7+lg5=lg2+lg5=lg(25)= lg10=.变式训练1:化简求值.(1)log2+log212-log242-1;(2)(lg2)2+lg2lg50+lg25;(3)(log32+log92)(log43+log83).解:(1)原式=log2+log212-log2-log22=log2(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(3)原式=(例2 比较下列各组数的大小.(1)log3与log5;(2)log1.10.7与log1.20.7;(3)已知logblogalogc,比较2b,2a,2c的大小关系.解:(1)log3

4、log31=0,而log5log51=0,log3log5.(2)方法一 00.71,1.11.2,0,即由换底公式可得log1.10.7log1.20.7.方法二 作出y=log1.1x与y=log1.2x的图象.如图所示两图象与x=0.7相交可知log1.10.7log1.20.7.(3)y=为减函数,且,bac,而y=2x是增函数,2b2a2c.变式训练2:已知0a1,b1,ab1,则loga的大小关系是 ( )A.loga B.C. D.解: C例3已知函数f(x)=logax(a0,a1),如果对于任意x3,+)都有|f(x)|1成立,试求a的取值范围.解:当a1时,对于任意x3,+

5、),都有f(x)0.所以,|f(x)|=f(x),而f(x)=logax在3,+)上为增函数,对于任意x3,+),有f(x)loga3. 因此,要使|f(x)|1对于任意x3,+)都成立.只要loga31=logaa即可,1a3. 当0a1时,对于x3,+),有f(x)0,|f(x)|=-f(x). f(x)=logax在3,+)上为减函数,-f(x)在3,+)上为增函数.对于任意x3,+)都有|f(x)|=-f(x)-loga3. 因此,要使|f(x)|1对于任意x3,+)都成立,只要-loga31成立即可,loga3-1=loga,即3,a1.综上,使|f(x)|1对任意x3,+)都成立的

6、a的取值范围是:(1,3,1). 变式训练3:已知函数f(x)=log2(x2-ax-a)在区间(-,1-上是单调递减函数.求实数a的取值范围.解:令g(x)=x2-ax-a,则g(x)=(x-)2-a-,由以上知g(x)的图象关于直线x=对称且此抛物线开口向上.因为函数f(x)=log2g(x)的底数21,在区间(-,1-上是减函数,所以g(x)=x2-ax-a在区间(-,1-上也是单调减函数,且g(x)0.解得2-2a2.故a的取值范围是a|2-2a2.例4 已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过A、B作y轴的平行与函数y=log2x的图象交于C、D两点.(

7、1)证明:点C、D和原点O在同一直线上;(2)当BC平行于x轴时,求点A的坐标.(1)证明 设点A、B的横坐标分别为x1、x2,由题设知x11,x21,则点A、B的纵坐标分别为log8x1、log8x2.因为A、B在过点O的直线上,所以点C、D的坐标分别为(x1,log2x1)、(x2,log2x2),由于log2x1=3log8x1,log2x2=3log8x2,OC的斜率为k1=,OD的斜率为由此可知k1=k2,即O、C、D在同一直线上.(2)解: 由于BC平行于x轴,知log2x1=log8x2,即得log2x1=log2x2,x2=x31,代入x2log8x1=x1log8x2,得x3

8、1log8x1=3x1log8x1,由于x11,知log8x10,故x31=3x1,又因x11,解得x1=,于是点A的坐标为(,log8).变式训练4:已知函数f(x)=log2+log2(x-1)+log2(p-x).(1)求f(x)的定义域; (2)求f(x)的值域.解:(1)f(x)有意义时,有由、得x1,由得xp,因为函数的定义域为非空数集,故p1,f(x)的定义域是(1,p).(2)f(x)=log2(x+1)(p-x)=log2-(x-)2+ (1xp),当1p,即p3时,0-(x-,log22log2(p+1)-2.当1,即1p3时,0-(x-log21+log2(p-1).综合

9、可知:当p3时,f(x)的值域是(-,2log2(p+1)-2;当1p3时,函数f(x)的值域是(-,1+log2(p-1).小结归纳1处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.2对数函数值的变化特点是解决含对数式问题时使用频繁的关键知识,要达到熟练、运用自如的水平,使用时常常要结合对数的特殊值共同分析.3含有参数的指对数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类.4含有指数、对数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3