ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:88KB ,
资源ID:917122      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-917122-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省江阴市山观高级中学2016届高三数学一轮复习函数教学案:第4课时函数的奇偶性.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省江阴市山观高级中学2016届高三数学一轮复习函数教学案:第4课时函数的奇偶性.doc

1、第4课时 函数的奇偶性基础过关1奇偶性: 定义:如果对于函数f (x)定义域内的任意x都有 ,则称f (x)为奇函数;若 ,则称f (x)为偶函数. 如果函数f (x)不具有上述性质,则f (x)不具有 . 如果函数同时具有上述两条性质,则f (x) . 简单性质:1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称.2) 函数f(x)具有奇偶性的必要条件是其定义域关于 对称.2与函数周期有关的结论:已知条件中如果出现、或(、均为非零常数,),都可以得出的周期为 ;的图象关于点中心对称或的图象关于直线轴对称,均可以得到周期 典型例

2、题例1. 判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=log2(x+) (xR);(3)f(x)=lg|x-2|.解:(1)x2-10且1-x20,x=1,即f(x)的定义域是-1,1.f(1)=0,f(-1)=0,f(1)=f(-1),f(-1)=-f(1),故f(x)既是奇函数又是偶函数.(2)方法一 易知f(x)的定义域为R,又f(-x)=log2-x+=log2=-log2(x+)=-f(x),f(x)是奇函数.方法二 易知f(x)的定义域为R,又f(-x)+f(x)=log2-x+log2(x+)=log21=0,即f(-x)=-f(x),f(x)为奇函数.(3)由|x-

3、2|0,得x2.f(x)的定义域x|x2关于原点不对称,故f(x)为非奇非偶函数.变式训练1:判断下列各函数的奇偶性:(1)f(x)=(x-2);(2)f(x)=;(3)f(x)=解:(1)由0,得定义域为-2,2),关于原点不对称,故f(x)为非奇非偶函数.(2)由得定义域为(-1,0)(0,1).这时f(x)=.f(-x)=-f(x)为偶函数.(3)x-1时,f(x)=x+2,-x1,f(-x)=-(-x)+2=x+2=f(x).x1时,f(x)=-x+2,-x-1,f(-x)=x+2=f(x).-1x1时,f(x)=0,-1-x1,f(-x)=0=f(x).对定义域内的每个x都有f(-x

4、)=f(x).因此f(x)是偶函数.例2 已知函数f (x),当x,yR时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果xR+,f(x)0,并且f(1)=-,试求f(x)在区间-2,6上的最值.(1)证明: 函数定义域为R,其定义域关于原点对称.f(x+y)=f(x)+f(y),令y=-x,f(0)=f(x)+f(-x).令x=y=0,f(0)=f(0)+f(0),得f(0)=0.f(x)+f(-x)=0,得f(-x)=-f(x),f(x)为奇函数.(2)解:方法一 设x,yR+,f(x+y)=f(x)+f(y),f(x+y)-f(x)=f(y).xR+,f(

5、x)0,f(x+y)-f(x)0,f(x+y)f(x).x+yx,f(x)在(0,+)上是减函数.又f(x)为奇函数,f(0)=0,f(x)在(-,+)上是减函数.f(-2)为最大值,f(6)为最小值.f(1)=-,f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2f(1)+f(2)=-3.所求f(x)在区间-2,6上的最大值为1,最小值为-3.方法二 设x1x2,且x1, x2R.则f(x2-x1)=fx2+(-x1)=f(x2)+f(-x1)=f(x2)-f(x1).x2-x10,f(x2-x1)0.f(x2)-f(x1)0.即f(x)在R上单调递减.f(-2)为最大值,f

6、(6)为最小值.f(1)=-, f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2f(1)+f(2)=-3.所求f(x)在区间-2,6上的最大值为1,最小值为-3.变式训练2:已知f(x)是R上的奇函数,且当x(-,0)时,f(x)=-xlg(2-x),求f(x)的解析式. 解:f(x)是奇函数,可得f(0)=-f(0),f(0)=0.当x0时,-x0,由已知f(-x)=xlg(2+x),-f(x)=xlg(2+x),即f(x)=-xlg(2+x) (x0).f(x)= 即f(x)=-xlg(2+|x|) (xR).例3 已知函数f(x)的定义域为R,且满足f(x+2)=-f(

7、x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0x1时,f(x)=x,求使f(x)=-在0,2 009上的所有x的个数.(1)证明: f(x+2)=-f(x),f(x+4)=-f(x+2)=-f(x)=f(x),f(x)是以4为周期的周期函数.(2)解: 当0x1时,f(x)=x,设-1x0,则0-x1,f(-x)=(-x)=-x.f(x)是奇函数,f(-x)=-f(x),-f(x)=-x,即f(x)= x. 故f(x)= x(-1x1) 又设1x3,则-1x-21,f(x-2)= (x-2), 又f(x-2)=-f(2-x)=-f(-x)+2)=-f(-x)=-f(x)

8、,-f(x)=(x-2),f(x)=-(x-2)(1x3). f(x)=由f(x)=-,解得x=-1.f(x)是以4为周期的周期函数.故f(x)=-的所有x=4n-1 (nZ). 令04n-12 009,则n,又nZ,1n502 (nZ),在0,2 009上共有502个x使f(x)=-.变式训练3:已知函数f(x)=x2+|x-a|+1,aR.(1)试判断f(x)的奇偶性;(2)若-a,求f (x)的最小值.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时,f(x)为偶函数.当a0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)f(-a),f(a)

9、-f(-a),此时,f(x) 为非奇非偶函数.(2)当xa时,f(x)=x2-x+a+1=(x-)2+a+,a,故函数f(x)在(-,a上单调递减,从而函数f(x)在(-,a上的最小值为f(a)=a2+1.当xa时,函数f(x)=x2+x-a+1=(x+)2-a+,a-,故函数f(x)在a,+)上单调递增,从而函数f(x)在a,+)上的最小值为f(a)=a2+1. 综上得,当-a时,函数f(x)的最小值为a2+1.小结归纳1奇偶性是某些函数具有的一种重要性质,对一个函数首先应判断它是否具有这种性质. 判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断(或证明)函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a与a,验证f(a)f(a)0.2对于具有奇偶性的函数的性质的研究,我们可以重点研究y轴一侧的性质,再根据其对称性得到整个定义域上的性质.3函数的周期性:第一应从定义入手,第二应结合图象理解.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3