ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1.14MB ,
资源ID:91548      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-91548-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省威远中学2020届高三数学5月月考试题 文.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省威远中学2020届高三数学5月月考试题 文.doc

1、四川省威远中学2020届高三数学5月月考试题 文 本试卷分第卷(选择题)和第卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 第卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知集合,则= ( )A B C D 2.已知复数z满足,则的共轭复数是( )A B C D 3.2019年9月25日.阿里巴巴在杭州云栖大会上正式对外发布了含光800AI芯片,在业界标准的ResNet -50测试中,含光800推理性能达到78563 lPS,比目前业界最好的AI芯片性能高4倍;能效比500 IPS/ W,是第二

2、名的3.3倍.在国内集成电路产业发展中,集成电路设计产业始终是国内集成电路产业中最具发展活力的领域,增长也最为迅速.如图是2014-2018年中国集成电路设计产业的销售额(亿元)及其增速(%)的统计图,则下面结论中正确的是( ) A.2014-2018年,中国集成电路设计产业的销售额逐年增加B.2014-2017年,中国集成电路设计产业的销售额增速逐年下降C. 2018年中国集成电路设计产业的销售额的增长率比2015年的高D. 2018年与2014年相比.中国集成电路设计产业销售额的增长率约为110%4.在等差数列中,则数列的前5项之和的值为( )A108 B90 C72 D245.已知, ,

3、则( )ABCcabD6.已知向量,且,若均为正数,则的最小值是( )A.24B.8C.D.7.已知函数的两个相邻的对称轴之间的距离为,为了得到函数的图象,只需将的图象 ( )A向左平移个单位长度 B向右平移个单位长度C向左平移个单位长度 D向右平移个单位长度8.函数在上的图象大致为( )A.B.C.D.9.古希腊数学家阿基米德是世界上公认的三位最伟大的数学家之一,其墓碑上刻着他认为最满意的一个数学发现,如图,一个“圆柱容球”的几何图形,即圆柱容器里放了一个球,该球顶天立地,四周碰边,在该图中,球的体积是圆柱体积的,并且球的表面积也是圆柱表面积的, 若圆柱的表面积是现在向圆柱和球的缝隙里注水,

4、则最多可以注入的水的体积为( )A. B. C.D.10.已知函数是定义在R上的函数,且满足,其中为的导数,设,则的大小关系是( )A. B. C. D. 11.若中,则此三角形的形状是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形12.椭圆的左、右焦点分别为,过点的直线交椭圆于两点,交y轴于点,若, 是线段的三等分点, 的周长为,则椭圆的标准方程为( )A. B. C. D. 第卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡相应位置上.13.若,则的值为_.14.已知,则向量在方向上的投影为_15.已知是椭圆的右焦点,为椭圆上一点,

5、则的最大值为 16.已知四面体内接于球,且,若四面体的体积为,球心恰好在棱上,则球的表面积是_三、解答题(本大题共6小题,共70分.22题10分,17题-21题各12分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在中,内角所对的边分别为,且(1).证明: (2)若,且的面积为,求18.(本小题满分12分)某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示(1)估计该社区居民最近一年来网购消

6、费金额的中位数;(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”附:观测值公式:男女合计网购迷20非网购迷45合计100临界值表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(本小题满分12分)如图,四边形为矩形,且平面为的中点.(1)求证:;(2)若为的中点,求三棱锥的体积.20.(本小题满分12分)已知点为坐标原点,椭圆的左、右焦点分别为,离心率为,点分别是椭圆的右顶点、上顶点,的边上的中线长为(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点,

7、若,求直线的方程21.(本小题满分12分)已知函数为自然对数的底数.(1)当时,求函数的单调区间;(2)若函数在上有三个不同的极值点,求实数a的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,以x轴的正半轴为极轴,曲线的极坐标方程为.(I)将曲线的极坐标方程化为直角坐标方程;(II)过点作倾斜角为的直线l与圆交于两点,试求的值23.【选修4-5不等式选讲】已知函数.(1).当时,求不等式的解集;(2).对于任意实数,不等式恒成立,求实数的取值范围.威远中学高2020届第六学期试题数学(文科)参考答案1.B2.B解:由,得,所以3.A解析:对于A,由

8、图可得2014-2018年中国集成电路设计产业的销售额逐年增加,所以A正确;对于B,2017年中国集成电路设计产业的销售额增速比2016年高,所以B错误;对于C,2018年中国集成电路设计产业的销售额的增长率(约21.5%)低于2015年的增长率(约26.5%),所以C错误;对于D,2018年与2014年相比,中国集成电路设计产业销售额的增长率为所以D正确.故选A.4.B解:在等差数列中, ,数列的前5项之和.5.A解6.B7.D解:因为函数的两个相邻的对称轴之间的距离为,所以,所以,所以,即,又,即为了得到函数的图象,只需将的图象向右平移个单位长度8A解:因为,所以函数为偶函数,故排除D;因

9、为,故排除B;因为,故排除C.故选A.9.B解析:设球的半径为,则由题意可得球的表面积为,所以,所以圆柱的底面半径为1,高为2,所以最多可以注入的水的体积为.10.A解:令,则,所以函数在定义域R上单调递增,从而,得,即.故选A.11.A解:中,,已知等式变形得:,即,整理得:,即,或(不合题意,舍去),则此三角形形状为直角三角形.12.A解:由椭圆的定义,得,的周长,所以,所以椭圆.不妨令点C是的中点,点A在第一象限,因为,所以点A的横坐标为c,所以,得,所以.把点B的坐标代入椭圆E的方程,得,即,化简得.又,所以,得,13.解:两边同时平方,得,所以.14.3解:,则向量在方向上的投影为1

10、5.解:根据题意,设椭圆的左焦点为,椭圆的方程为,其中为椭圆上一点,则,则,则,则,则,分析可得:,当三点共线时,等号成立,则的最大值为16.解:如图:在三角形中,因为,所以为直角三角形,所以三角形的外接圆的圆心为的中点,连,根据垂径定理,可得平面,因为 为的中点可知平面,所以为四面体的高所以,解得所以所以四面体的外接球的半径为2,表面积为17.解:(1).根据正弦定理,由已知得, 展开得: 整理得: (2).由已知得: ,由,得: ,由,得: 由,得,所以, 由得18.解:(1)在直方图中,从左至右前3个小矩形的面积之和为,后2个小矩形的面积之和为,所以中位数位于区间内设直方图的面积平分线为

11、,则,得,所以该社区居民网购消费金额的中位数估计为17.5千元(2)由直方图知,网购消费金额在20千元以上的频数为,男女合计网购迷152035非网购迷452065合计6040100所以“网购迷”共有35人由列联表知,其中女性有20人,则男性有15人,所以补全的列联表如下:因为,查表得,所以有的把握认为“网购迷与性别有关”19.解:(1)连结,为的中点, ,又四边形是矩形,为等腰直角三角形, 则,同理可得, 又平面,且平面, , 又,平面,又平面, (2)取的中点,连接.又为的中点,且平面,平面由1得平面,是三棱锥的高,. 三棱锥的体积为20.解:(1)由题意得为直角三角形,且其斜边上的中线长为

12、,所以设椭圆的半焦距为,则,解得,所以椭圆的标准方程为(2)由题知,点的坐标为,显然直线的斜率存在,设直线的方程为,点,联立,消去,得,所以,所以 且因为,所以,则,整理得即化简得,解得因为都满足式,所以直线的方程为或即直线的方程为或21.解:(1)由题意,知函数的定义域为当时,对于任意的恒成立,若,则,若,则,当时,函数的单调递增区间为,单调递减区间为.(2)由题目条件,可知在上有三个不同的实根,即在上有两个不同的实根,且.令,则.当时,当时,当时,单调递增,当时,单调递减.的最大值为.又,而,实数a的取值范围为.22.解:(1)将曲线的极坐标方程,化为直角坐标方程为:;(2)直线l的参数方程为:(t为参数),将其带入上述方程中得:,则,所以.23.解:(1)当时,因为,所以或者或者解得:或者,所以不等式的解集为.(2).对于任意实数,不等式恒成立,等价于因为,当且仅当时等号成立,所以 因为时,函数单增区间为,单间区减为,所以当时,所以,所以实数的取值范围.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3