ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:27KB ,
资源ID:915147      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-915147-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(宁夏青铜峡市高级中学人教版高中数学必修二说课稿:2-3-1直线与平面垂直的判定 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

宁夏青铜峡市高级中学人教版高中数学必修二说课稿:2-3-1直线与平面垂直的判定 .doc

1、直线与平面垂直的判定第一课时(说课稿) 【教材分析】 1.教材的地位和作用: 直线与平面垂直的判定是高中新教材人教A版必修2.第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。 【学生情况分析】 初中学生已经掌握了平面内证明线线垂直的方法,学习本课前,学生又通过直观感知

2、、操作确认的方法,学习了直线、平面平行的判定定理,对空间概念建立有一定基础,因而,可以采用类比的方法来学习本课。 但是,学生的抽象概括能力、空间想象力还有待提高。线面垂直的定义比较抽象,平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。因而,我将本节课的教学难点确立为:操作确认并概括出直线与平面垂直的定义和判定定理。 【教学目标】 知识与技能:通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理;并能运用定义和定理证明一些空间位置关系的简单命题。 过程与方法:通过线面垂直定义及定理的探究过程,感知几何

3、直观能力和抽象概括能力,体会转化思想在解决问题中的运用。 情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。 【教学重点和难点】 操作确认并概括出直线与平面垂直的定义和判定定理。 【教学过程设计】 1从实际背景中感知直线与平面垂直的形象 问题1:空间一条直线和一个平面有哪几种位置关系? 问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明。 设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义。 2.提炼直线与平面垂直的定义 问题3:结合对下列问题

4、的思考,试着给出直线和平面垂直的定义. (1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少? (2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变? (3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么? 设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念,学生叙写定义,并建立文字、图形、

5、符号这三种语言的相互转化。 思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直? (2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线? (对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若 ,则 ) 设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念。 通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法。 通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无

6、法去一一检验。这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法。 3.探究直线与平面垂直的判定定理 师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触) 问题4: (1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面所在的平面垂直? (组织学生动手操作、探究、确认) 设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直。这

7、时,AD与BD,CD都垂直,而BD,CD相交,从而引出判定定理。 定理 一条直线与一个平面上的两条相交直线都垂直,则该直线与此平面垂直。 问题5: (1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里? (2)你觉得定义与判定定理的共同点是什么? 设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想. 4.直线与平面垂直判定定理的应用 如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线。并说明这些直线有怎样的位置关系

8、? 练习:如图,在三棱锥V-ABC中 ,VA=VC,AB=BC,K是AC的中点。 求证:AC平面VKB 思考: (1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VBAC; (2)在中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系; (3)在的条件下,有人说“VBAC, VBEF, VB平面ABC”,对吗? 设计意图:例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理。3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融

9、会贯通。 课时小结 (1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述。 (2)直线与平面垂直的判定定理中体现了哪些数学思想方法? 设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括。 目标检测设计 1.课本P66探究:如图2.3-7,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1CB1D1. 2.如图,PA平面ABC,BCAC,写出图中所有的直角三角形.3.课本P67练习2 设计意图:第1题是本节教材中的一道探究题,主要运用直线与平面垂直的意义与判定定理;第2题也是活用直线与平面垂直的意义与判定定理,前两题重在检测本节课的知识与技能目标,检测运用知识解决问题的能力;第3题通过学生探索,培养学生观察分析归纳和综合运用知识的能力

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3