1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一排列、组合的基本问题1.某校根据2017版新课程标准开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.30种B.35种C.42种D.48种2.在由数字1、2、3、4、5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有()A.56个B.57个C.58个D.60个3.八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有_种安排办法.4.(2018
2、浙江高考)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成_个没有重复数字的四位数.(用数字作答)世纪金榜导学号【解析】1.选A.按照所选的3门课程中A类的情形分两类:第一类,2门A类选修课,1门B类选修课,有种方法;第二类,1门A类选修课,2门B类选修课,有种方法,所以由分类加法计数原理得不同的选法共有+=12+18=30(种).2.选C.按照首位的大小分类:(1)开头为231的,有一个.(2)开头为23的,第三位从4,5中选一个,有种,余下的后两位,有种,共有=4个.(3)开头为2,第2位从4,5中选一个,有种,余下的后3位,有种,共有=12个.(4)开头为
3、3,后四位由1,2,4,5全排列,有4!=24个.(5)开头为4,第二位为1,2中的一个,有2种方法,后三位有3!=6种方法,共有26=12个.(6)开头为43,第三位从1,2中选一个,有2种方法,后两位有2!种方法,共有22=4个.(7)开头为435的,只有1个,所以由分类加法计数原理得所求的数共有1+4+12+24+12+4+1=58(个).3.方法一:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用分类加法计数原理,在每类情况下,划分“乙、丙坐下”“甲坐下”“其他五人坐下”三个步骤,又要用到分步乘法计数原理,这样可有如下算法:+=8
4、 640(种).方法二:采取“总方法数减去不符合题意的所有方法数”的算法.把“甲坐在前排的八人坐法数”看成“总方法数”,这个数目是.在这种前提下,不合题意的方法是“甲坐在前排,且乙、丙坐两排的八人坐法,”这个数目是.其中第一个因数表示甲坐在前排的方法数,表示从乙、丙中任选出一人的方法数,表示把选出的这个人安排在前排的方法数,下一个则表示乙、丙中未安排的那个人坐在后排的方法数,就是其他五人的坐法数,于是总的方法数为-=8 640(种).答案:8 6404.分类讨论:第一类:不含0的,按照分步乘法计数原理:=10324=720;第二类:包含0的,按照分步乘法计数原理:=10336=540,所以一共
5、有1 260个没有重复数字的四位数.答案:1 2601.求解有限制条件的排列问题的主要方法2.两类含有附加条件的组合问题的方法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.考点二排列、组合的综合问题【典例】1.从A,B,C,D,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞
6、赛,则不同的参赛方案种数为()A.24B.48C.72D.1202.把20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的方法种数为_.3.(2020浙江七彩联盟模拟)将8本不同的书全部分发给甲、乙、丙三名同学,每名同学至少分到一本,若三名同学所得书的数量各不相同,且甲同学分到的书比乙同学多,则不同的分配方法种数为世纪金榜导学号()A.1 344B.1 638C.1 920D.2 486【解题导思】序号联想解题1由“A不参加物理、化学竞赛”联想到分类:A参加,A不参加.2由题意知小球没有区别,及盒子内球数不小于编号数,联想到先在2,3号盒子里分别放
7、上1,2个球,变成了挡板问题.3看到每人至少分到一本,且各不相同,联想到分类讨论.【解析】1.选C.因为A参加时参赛方案有=48(种);A不参加时参赛方案有=24(种),所以不同的参赛方案共72种.2.先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中,即可共有C=120种方法.答案:1203.选A.8本不同的书全部分发给甲、乙、丙三名同学,每名同学至少分到一本,若三名同学所得书的数量各不相同,则有(1,2,5),(1,3,4)两种分组的方法,由于甲同学分到的书比乙同学多,当乙分得1本时,此
8、时的种数为(+)=896;当丙分得1本时,此时的种数为(+)=448,故不同的分配方法种数为896+448=1 344种.解决排列、组合的综合问题的关键点(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理作最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.(4)熟记排列数、组合数公式及其变形,准确计算.1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个
9、数为()A.24B.48C.60D.72【解析】选D.分两步:第一步,先排个位,有种选择;第二步,排前4位,有种选择.由分步乘法计数原理,知有=72个.2.某班组织文艺晚会,准备从A,B等8个节目中选出4个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为()A.1 860B.1 320C.1 140D.1 020【解析】选C.当A,B节目中只选一个时,共有=960种演出顺序;当A,B节目都被选中时,由插空法得共有=180种演出顺序.所以一共有960+180=1140种演出顺序.3.已知i,m,n是正整数,且1imn,求证:.【证明
10、】(用分析法)原不等式等价于,左边=,于是只要证明即可,联想到“糖水不等式:若0a0,则01”及不等式的可乘性,所以=,所以原不等式成立.考点三二项式定理命题精解读考什么:(1)考查二项展开式的通项及由通项求某一项的系数或常数项.(2)考查应用赋值法求某些数列的和.怎么考:求二项展开式的通项或某指定项的系数或常数项,或知道某项系数或二项式系数,反求参数的值,考查二项展开式中组合思想的应用.新趋势:结合二项展开式的特征,与数列求和或不等式等知识交汇考查二项式定理.学霸好方法1.求解二项式定理问题的关键(1)熟记二项式定理,会用组合思想解决展开式的通项,或某些指定项.(2)熟悉二项展开式的特征,掌
11、握赋值法解某项数列求和问题.2.交汇问题:解决与数列、不等式等知识交汇问题时,先用赋值法构造求和模型,再转化为熟悉的问题.二项展开式的通项及其应用【典例】1.(2018全国卷)的展开式中x4的系数为()A.10B.20C.40D.802.(2020浙江三校联考)已知二项式的展开式中,第5项是常数项,则n=_.二项式系数最大的项的系数是_.【解析】1.选C.展开式的通项公式为Tr+1=(x2)5-r=2rx10-3r,令10-3r=4可得r=2,则x4的系数为22=40.2.二项式展开式的通项为Tr+1=(2x)n-r=2n-r,因为第5项是常数项,所以n-4=0,即n=6.当r=3时,二项式系
12、数最大,故二项式系数最大的项的系数是26-3=160.答案:6160如何解决与二项展开式的通项有关的问题?提示:(1)求展开式中的特定项或其系数.可依据条件写出第k+1项,再由特定项的特点求出k值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k+1项,由特定项得出k值,最后求出其参数.二项式系数的性质与各项的和 【典例】1.若二项式的展开式的二项式系数之和为8,则该展开式所有项的系数之和为()A.-1B.1C.27D.-272.在的展开式中,x3的系数等于-5,则该展开式的各项的系数中最大值为()A.5B.10C.15D.203.设(x2+1)(2x+1)8
13、=a0+a1(x+2)+a2(x+2)2+a10(x+2)10,则a0+a1+a2+a10的值为_.世纪金榜导学号【解析】1.选A.依题意得2n=8,解得n=3,取x=1,得该二项展开式每一项的系数之和为(1-2)3=-1.2.选B.的展开式的通项为Tr+1=x5-r=(-a)rx5-2r,令5-2r=3,则r=1,所以-a5=-5,即a=1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为=10.3.在所给的多项式中,令x=-1可得(1+1)(-2+1)8=a0+a1+a2+a10,即a0+a1+a2+a10=2.答案:2如何求解二项式系数或展开式系数的
14、最值问题?提示:求解二项式系数或展开式系数的最值问题一般分两步:第一步,要弄清所求问题是“展开式系数最大”、“二项式系数最大”两者中的哪一个.第二步,若是求二项式系数的最大值,则依据(a+b)n中n的奇偶及二次项系数的性质求解.若是求展开式系数的最大值则在系数均为正值的前提下,求最大值只需解不等式组即可求得答案.二项式定理的综合应用 【典例】1.(x+y)(2x-y)6的展开式中x4y3的系数为()A.-80B.-40C.40D.802.(x2+x+y)5的展开式中x5y2的系数为()世纪金榜导学号A.10B.20C.30D.60【解析】1.选D.(2x-y)6的展开式的通项公式为Tr+1=(
15、2x)6-r(-y)r,当r=2时,T3=240x4y2,当r=3时,T4=-160x3y3,故x4y3的系数为240-160=80.2.选C.(x2+x+y)5的展开式的通项为=(x2+xyr,令r=2,则T3=(x2+x)3y2,又(x2+x)3的展开式的通项为(x2xk=,令6-k=5,则k=1,所以(x2+x+y)5的展开式中,x5y2的系数为=30.如何求解(a+b)m(c+d)n 或(a+b+c)n展开式的某一项的系数?提示:(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.(2)若三项能用完全平方
16、公式,那当然比较简单;若三项不能用完全平方公式,只需根据题目特点,把“三项”当成“两项”看,再利用二项展开式的通项公式去求特定项的系数.(3)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=(1+x)(1-x)5(1-x)2=(1-x2)5(1-x)2.(4)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.1.的展开式中x2y3的系数是()A.-20B.-5C.5D.20【解析】选A.由二项展开式的通项可得,第四项T4=(-2y)3=-20x2y3,故x2y3的系数为-20.2.将多项式a6x6+a5x5+a1x+a0分解因式得,m为常数,若a5=-7,则a0=()A
17、.-2B.-1C.1D.2【解析】选D.因为(x+m)5的通项公式为Tr+1=x5-rmr,a5x5=xx5-1m1+(-2)x5=(5m-2)x5,所以a5=5m-2,又因为a5=-7,所以5m-2=-7,所以m=-1,所以常数项a0=(-2)(-1)5=2.3.在的展开式中,含x5项的系数为()A.6B.-6C.24D.-24【解析】选B.由=-+-+,可知只有-的展开式中含有x5,所以的展开式中含x5项的系数为-=-6.4.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=_.【解析】设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x
18、=1,得(a+1)24=a0+a1+a2+a3+a4+a5.令x=-1,得0=a0-a1+a2-a3+a4-a5.-得16(a+1)=2(a1+a3+a5)=232,所以a=3.答案:35.(2020金华模拟)已知(2+x)(1-2x)7=a0+a1x+a2x2+a8x8,则a1+a2+a8=_,a3=_.【解析】因为(2+x)(1-2x)7=a0+a1x+a2x2+a8x8,令x=1得a0+a1+a2+a8=(2+1)(1-21)7=-3,令x=0得a0=2,所以a1+a2+a8=-5,由(1-2x)7展开式的通项为Tr+1=(-2)rxr,则a3=2(-2)3+(-2)2=-476.答案:
19、-5-4761.若(1-3x)2 020=a0+a1x+a2 020x2 020,xR,则a13+a232+a2 02032 020的值为()A.22 020-1B.82 020-1C.22 020D.82 020【解析】选B.由已知,令x=0,得a0=1,令x=3,得a0+a13+a232+a2 02032 020=(1-9)2 020=82 020,所以a13+a232+a2 02032 020=82 020-a0=82 020-1.2.的展开式中常数项为()A.-30B.30C.-25D.25【解析】选C.=x2-3x+,的展开式的通项为Tr+1=(-1)r,易知当r=4或r=2时原式有常数项,令r=4,T5=(-1)4,令r=2,T3=(-1)2,故所求常数项为-3=5-30=-25.关闭Word文档返回原板块