ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:222.50KB ,
资源ID:907864      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-907864-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017届高三数学(理)一轮总复习(江苏专用)课时跟踪检测(四十二) 空间点、直线、平面之间的位置关系 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017届高三数学(理)一轮总复习(江苏专用)课时跟踪检测(四十二) 空间点、直线、平面之间的位置关系 WORD版含解析.doc

1、课时跟踪检测(四十二) 空间点、直线、平面之间的位置关系一抓基础,多练小题做到眼疾手快1(2016扬州中学检测)下列命题中正确的是_(填序号)空间四点中有三点共线,则此四点必共面;三个平面两两相交的三条交线必共点;空间两组对边分别相等的四边形是平行四边形;平面和平面可能只有一个交点解析:由公理及推论,可得正确,错误答案:2(2016南京外国语学校)已知,为两个不重合的平面,A,B,M,N为相异四点,a为直线,则下列推理错误的是_(填序号)Aa,A,Ba,Ba;M,M,N,NMN;A,AA.解析:由公理及推论,可得推理正确因为A,A,所以A,由公理知为经过点A的一条直线而不是一个点A,所以推理错

2、误答案:3.(2016海门中学月考)如图,在长方体ABCDA1B1C1D1中,底面ABCD为正方形,E,F分别是棱A1A,C1C的中点若BFC60,则ED1D_.解析:取BB1的中点G,连结C1G,EG,因为E是棱A1A的中点,G是棱B1B的中点,所以A1B1綊EG.又A1B1綊C1D1,所以EG綊C1D1,所以四边形EGC1D1是平行四边形,所以D1E綊C1G.又BG綊C1F,所以四边形BGC1F是平行四边形,所以C1GFB,所以D1EFB.又D1DFC,ED1D与BFC的两边方向相同,所以由等角定理,可得ED1DBFC60.答案:604.如图,平行六面体ABCDA1B1C1D1中既与AB共

3、面又与CC1共面的棱有_条解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条答案:55(2016江苏四星级高中联考)在正四棱锥VABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为_解析:如图,设ACBDO,连结VO,因为四棱锥VABCD是正四棱锥,所以VO平面ABCD,故BDVO.又四边形ABCD是正方形,所以BDAC,又VOACO,所以BD平面VAC,所以BDVA,即异面直线VA与BD所成角的大小为.答案:二保高考,全练题型做到高考达标1空间四边形的两

4、条对角线互相垂直,顺次连结四边中点的四边形一定是_(填序号)矩形;菱形;正方形;直角梯形解析:顺次连结空间四边形四边中点的四边形是平行四边形,又因为空间四边形的两条对角线互相垂直,所以平行四边形的两邻边互相垂直,故顺次连结四边中点的四边形一定是矩形答案:2(2016金陵中学检测)若a,b是空间的两条直线且a,b,l,则a与b的位置关系为_解析:如图,b1,b2,a1,a2,且a2与b2相交,b1a1,a2与b1异面,结合图形(如图所示),可知a与b的位置关系是平行或相交或异面答案:平行或相交或异面3(2016金陵中学检测)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p是q的_条件

5、(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”)解析:若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件答案:充分不必要4给出下列四个说法,其中正确的是_(填序号)空间中两条不相交的直线一定平行;梯形可以确定一个平面;若一条直线和两条平行直线中的一条相交,则它和另一条也相交;空间四条直线a,b,c,d,如果ab,cd,且ad,那么bc.解析:在空间中不相交的两条直线可能平行,也可能异面,错误;正确;错误,因为它也可能与另一条直线异面;由公理4,知正确答案:5已知a,b,c为三条不同的直线,且a平面,b平面,c.若a与b是异面直线,则c至少与a,b中的一条相交;若a

6、不垂直于c,则a与b一定不垂直;若ab,则必有ac;若ab,ac,则必有.其中正确的命题的个数是_解析:中若a与b是异面直线,则c至少与a,b中的一条相交若c与a,b都不相交,则ca,cb,则ab,与a,b异面矛盾,故正确;中平面平面时,若bc,则b平面,此时不论a,c是否垂直,均有ab,故错误;中当ab时,则a平面,由线面平行的性质定理可得ac,故正确;中若bc,则ab,ac时,a与平面不一定垂直,此时平面与平面也不一定垂直,故错误,所以正确命题的个数是2.答案:26如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为_对解析:平面图形的翻折应

7、注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行故互为异面的直线有且只有3对答案:37设a,b,c是空间中的三条直线,下面给出四个命题:若ab,bc,则ac;若ab,bc,则ac;若a与b相交,b与c相交,则a与c相交;若a平面,b平面,则a,b一定是异面直线上述命题中正确的命题是_(写出所有正确命题的序号)解析:由公理4知正确;当ab,bc时,a与c可以相交、平行或异面,故错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故错;a,b,并不能说明a与b“不同在

8、任何一个平面内”,故错答案:8.(2014淮安模拟)如图是某个正方体的侧面展开图,l1,l2是两条侧面对角线,则在正方体中,l1与l2的夹角为_解析:将侧面展开图还原成正方体如图所示,则B,C两点重合故l1与l2相交,连结AD,则ABD为正三角形,所以l1与l2的夹角为.答案:9.(2016启东中学检测)如图所示,在正方体ABCDA1B1C1D1中,E,F分别为D1C1,B1C1的中点,ACBDP,A1C1EFQ.(1)求证:D,B,F,E四点共面;(2)作出直线A1C与平面BDEF的交点R的位置解:(1)证明:法一:如图,连结DE,BF.由于CC1和BF在同一个平面内且不平行,故直线CC1与

9、BF必相交,设交点为O,则OC1C1C.同理,直线DE与CC1也相交,设交点为O,则OC1C1C,故O与O重合由此得DEBFO,故D,B,F,E四点共面(设为)法二:连结B1D1,在正方体ABCDA1B1C1D1中,B1D1BD.又E,F分别为C1D1,C1B1的中点,EFB1D1,EFBD,即D,B,F,E四点共面(设为)(2)连结PQ,A1C.由于AA1CC1,所以A1,A,C,C1四点共面(设为)又PBD,BD,故P.又PAC,AC,所以P,所以P,同理可证得Q,所以PQ.又A1C,所以A1C与平面的交点就是A1C与PQ的交点,则A1C与PQ的交点就是所求的交点R.10.(2016南京一

10、中检测)如图,E,F分别是长方体ABCDA1B1C1D1的棱A1A,C1C的中点求证:四边形B1EDF是平行四边形证明:设Q是DD1的中点,连结EQ,QC1,如图因为E是AA1的中点,Q是DD1的中点,所以EQ綊A1D1.又A1D1綊B1C1,所以EQ綊B1C1,所以四边形EQC1B1为平行四边形,所以B1E綊C1Q.又Q,F分别是D1D,C1C的中点,所以QD綊C1F,所以四边形DQC1F为平行四边形,所以C1Q綊DF.故B1E綊DF,所以四边形B1EDF是平行四边形三上台阶,自主选做志在冲刺名校1.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体

11、中,GH与EF平行;BD与MN为异面直线;GH与MN成60角;DE与MN垂直以上四个命题中,正确命题的序号是_解析:还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60角,DEMN.答案:2设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是_若AC与BD共面,则AD与BC共面;若AC与BD是异面直线,则AD与BC是异面直线;若ABAC,DBDC,则ADBC;若ABAC,DBDC,则ADBC.解析:中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;中,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;中,若ABAC,DB

12、DC,AD不一定等于BC;中,若ABAC,DBDC,可以证明ADBC.答案:3如图所示,正方体ABCDA1B1C1D1中,M,N分别是A1B1,B1C1的中点,问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由解:(1)不是异面直线理由如下:连结MN,A1C1,AC.因为M,N分别是A1B1,B1C1的中点,所以MNA1C1.又因为A1AC1C,A1AC1C,所以A1ACC1为平行四边形,所以A1C1AC,所以MNAC,所以A,M,N,C在同一平面内,故AM和CN不是异面直线(2)是异面直线证明如下:因为ABCDA1B1C1D1是正方体,所以B,C,C1,D1不共面假设D1B与CC1不是异面直线,则存在平面,使D1B平面,CC1平面,所以D1,B,C,C1,与B,C,C1,D1不共面矛盾所以假设不成立,即D1B与CC1是异面直线

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3