1、基础巩固(25分钟,60分)一、选择题(每小题5分,共25分)12019厦门一中检测下列说法正确的是()A用一平面去截圆台,截面一定是圆面B在圆台的上、下底面圆周上各取一点,则两点的连线就是圆台的母线C圆台的任意两条母线延长后相交于同一点D圆锥的母线可能平行解析:对于A,用一平面去截圆台,当截面与底面不平行时,截面不是圆面对于B,等腰梯形(轴截面)的腰才是圆台的母线对于D,圆锥的母线延长后交于顶点,因此不可能平行答案:C2下列说法正确的有()球的半径是球面上任意一点与球心的连线;球的直径是球面上任意两点间的线段;用一个平面截一个球,得到的是一个圆;用一个平面截一个球,得到的截面是一个圆面A0个
2、 B1个C2个 D3个解析:是正确的;是错误的,只有两点的连线经过球心时才为直径;是错误的;是正确的答案:C3等腰三角形ABC绕底边上的中线AD所在的直线旋转所得的几何体是()A圆台 B圆锥C圆柱 D球解析:由题意可得ADBC,且BDCD,所以形成的几何体是圆锥故选B.答案:B4下图是由选项中的哪个图形旋转得到的()解析:该组合体上部是圆锥,下部是圆台,由旋转体定义知,上部由直角三角形的直角边为轴旋转形成,下部由直角梯形垂直于底边的腰为轴旋转形成故选A.答案:A5如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是()A一个棱柱中挖去一个棱柱B一个棱柱中挖去一个圆柱C一个圆柱中挖去
3、一个棱锥D一个棱台中挖去一个圆柱解析:一个六棱柱挖去一个等高的圆柱,选B.答案:B二、填空题(每小题5分,共15分)6下列说法正确的是_圆台可以由任意一个梯形绕其一边所在直线旋转形成;在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;圆柱的任意两条母线平行,圆锥的任意两条母线相交,圆台的任意两条母线延长后相交解析:错,圆台是直角梯形绕其直角边所在直线或等腰梯形绕其底边的中线所在直线旋转形成的;由母线的定义知错;正确答案:7圆台的两底面半径分别为2,5,母线长是3,则其轴截面面积是_解析:设圆台的高为h,则h9,轴截面面积S(410)963.答案:6382019扬州市校级月考两相邻边长
4、分别为3 cm和4 cm的矩形,以一边所在的直线为轴旋转所成的圆柱中,母线长和底面半径分别为_解析:当以3 cm长的一边所在直线为轴旋转时,母线长为3 cm,底面半径为4 cm;当以4 cm长的一边所在直线为轴旋转时,母线长为4 cm,底面半径为3 cm.答案:3 cm,4 cm或4 cm,3 cm三、解答题(每小题10分,共20分)9如图,在ABC中,ABC120,它绕AB边所在直线旋转一周后形成的几何体结构如何?解析:旋转后的几何体结构如下:是一个大圆锥挖去了一个同底面的小圆锥10指出图中的三个几何体分别是由哪些简单几何体组成的解析:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成(2)
5、几何体由一个六棱柱和一个圆柱拼接而成(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成能力提升(20分钟,40分)11我国古代名著数书九章中有云:“今有木长二丈四尺,围之五尺葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好与圆木顶部平齐,问葛藤最短长多少尺?”(注:1丈等于10尺)则葛藤最短为()A29尺 B24尺C26尺 D30尺解析:由题意,圆木的侧面展开图是矩形,将圆木侧面展开两次,则一条直角边(即圆木的高)长为24尺,其邻边长为5210(尺),因此葛藤最短为26(尺)
6、答案:C12已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体为_解析:过直角顶点向斜边作垂线,则由旋转体的定义可知,该直角三角形绕斜边所在的直线旋转形成的几何体是由两个共底面(底面半径为)的圆锥组成的组合体. 答案:由两个共底面(底面半径为)的圆锥组成的组合体13一个圆台的母线长为12 cm,两底面面积分别为4 cm2和25 cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长解析:如图,将圆台恢复成圆锥后作其轴截面,设圆台的高为h cm,截得该圆台的圆锥的母线长为x cm,由条件可得圆台上底半径r2 cm,下底半径r5 cm.(1)由勾股定理得h3 (cm)(2)由三角形相似得:,解得x20 (cm)14一个有30角的直角三角板绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180得到什么图形?旋转360又得到什么图形?解析:图(1)、(2)旋转一周得到的几何体是圆锥;图(3)旋转一周所得几何体是两个圆锥拼接而成的几何体;图(4)旋转180是两个半圆锥的组合体,旋转360,旋转轴左侧的直角三角形旋转得到的圆锥隐藏于右侧直角三角形旋转得到的圆锥内