ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:198KB ,
资源ID:901996      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-901996-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(甘肃省庆阳市宁县第五中学高中数学选修1-2教案:2.2.2反证法.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

甘肃省庆阳市宁县第五中学高中数学选修1-2教案:2.2.2反证法.doc

1、课题 2.2.2反证法授课时间2015.课型新授二次修改意见课时1授课人科目数学主备韩雅雅教学目标知识与技能结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点.过程与方法引导学生自主完成自学任务,给出问题现有学生自己解决,再小组讨论后师生共同解决;情感态度价值观会用反证法证明问题;了解反证法的思考过程.教材分析重难点建学重点: 会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学设想教法引导探究学法合作交流教具多媒体课堂设计一、 目标展示1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)

2、2. 提出问题: 平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”. 讨论如何证明这个命题?3. 给出证法:先假设可以作一个O过A、B、C三点, 则O在AB的中垂线l上,O又在BC的中垂线m上, 即O是l与m的交点。 但 A、B、C共线,lm(矛盾) 过在同一直线上的三点A、B、C不能作圆.二、 预习检测1. 教学反证法概念及步骤: 练习:仿照以上方法,证明:如果ab0,那么 提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.证明基本步骤:假设原命题的结论不成立 从假设出发,经推理论证得到矛盾 矛盾的原因是假

3、设不成立,从而原命题的结论成立应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实. 注:结合准备题分析以上知识.三、 质疑探究 出示例1:求证圆的两条不是直径的相交弦不能互相平分. 分析:如何否定结论? 如何从假设出发进行推理? 得到怎样的矛盾?与教材不同的证法:反设AB、CD被P平分,P不是圆心,连结OP,则由垂径定理:OPAB,OPCD,则过P有两条直线与OP垂直(矛盾),不被P平分.四 精讲点拨 出示例2:求证是无理数. ( 同上分析 板演证明,提示:有理数可表示为)证:假设是有理数,则不妨设(m,n为互质正整数),从而:,可见m是3的倍数.设m=3p(p是正整数),则 ,可见n 也是3的倍数.这样,m, n就不是互质的正整数(矛盾). 不可能,是无理数.五 当堂检测 如果为无理数,求证是无理数.六 布置作业 课本44页1.2.3题板书设计2.2.2反证法反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)教学反思

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3