ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:74KB ,
资源ID:899969      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-899969-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(甘肃省宁县第五中学人教版高中数学必修四教案:1.4.2 正弦函数、余弦函数的性质.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

甘肃省宁县第五中学人教版高中数学必修四教案:1.4.2 正弦函数、余弦函数的性质.doc

1、课题1.4.2 正弦函数、余弦函数的性质授课时间4.22课型新授二次修改意见课时 1授课人张景民科目数学主备张景民教学目标知识与技能1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.过程与方法2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,。情感态度价值观3 学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.教材分析重难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教

2、学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.教学设想教法引导探究学法自学探究教具多媒体 直尺,圆规课堂设计一、 目标展示.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.二 .预习检测问题正弦函数、余弦函数是周期

3、函数吗?如果是,又是怎样周期性变化的?问题阅读教材并思考:怎样从代数的角度定义周期函数?三 质疑探究 提出问题 怎样正确理解三角函数是周期函数的定义?并举例说明. 通过探求思考怎样求一些简单三角函数的周期? 活动:对问题,学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c为常数,xR)是周期函数,所有非零实数T都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x有f(x+T)=f(x),那么T就不是f(x)的周期.例如,

4、分别取 x1=2k+(kZ),x2=,则由sin(2k+)sin(2k+),sin(+)sin,可知不是正弦函数的周期.又如sin(30+120)=sin30,但不是对所有x都有f(x+120)=f(x),所以120不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2,4,6,8,都是它的周期,有无穷多个,即2k(kZ,k0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T是函数f(x)的周期,那么对于任意的kZ,k0,kT也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期

5、函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c为常数,xR),所有非零实数T都是它的周期,由于T可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期. 对问题,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T是f(x)的周期,那么2T、3T、呢?怎样求?实际上,由于T是f(x)的周期,那么2T、3T、也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数

6、学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数. 四 精讲点拨例1 求下列函数的周期:(1)y=3cosx,xR;(2)y=sin2x,xR;(3)y=2sin(-),xR.解:(1)周期为2;(2)周期为;(3)周期为4.五 当堂测试1.已知f(x)是周期为5的周期函数,且f(1)=2 007,求f(11).解:因为5是函数f(x)在R上的周期,所以f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2 007.2.已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8).解:由题意知,3是函数f(x)的周期,且f(-x)=-f(x),所以f(8)=f(2+23)=f(2)=f(-1+3)=f(-1)=-f(1)=-2.六 作业布置 1.课本习题 A组3,B组3.2.预习正弦函数、余弦函数的奇偶性.板书设计一周期性 二 例题 教学反思

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3