ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:861KB ,
资源ID:898026      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-898026-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(21版高考数学人教A版浙江专用大一轮复习核心考点&精准研析 4-7 应 用 举 例 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

21版高考数学人教A版浙江专用大一轮复习核心考点&精准研析 4-7 应 用 举 例 WORD版含解析.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一测量距离问题1.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75,30,此时气球的高是60 m,则河流的宽度BC=()A.240(-1) mB.180(-1) mC.120(-1) mD.30(+1) m2.一船以每小时15 km的速度向东行驶,船在A处看到一灯塔B在北偏东60,行驶4小时后,船到达C处,看到这个灯塔在北偏东15,这时船与灯塔的距离为()A.60 kmB.60 km C.30 kmD.30 km3.如图,为了测量A,C两点

2、间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且B与D互补,则AC的长为世纪金榜导学号()A.7 kmB.8 kmC.9 kmD.6 km4.如图,海中有一小岛C,一小船从A地出发由西向东航行,望见小岛C在北偏东60,航行8海里到达B处,望见小岛C在北偏东15,若此小船不改变航行的方向继续前行2(-1)海里,则离小岛C的距离为()世纪金榜导学号A.8(+2)海里 B.2(-1)海里C.2(+1)海里D.4(+1)海里【解析】1.选C.记气球在地面的投影为D,在RtABD中,cos 15=,又cos 15=cos (60-

3、45)=,所以AB=.在ABC中,由正弦定理得=,所以BC=AB=120(-1)(m).2.选A.画出图形如图所示,在ABC中,BAC=30,AC=415=60,B=45,由正弦定理得=,所以BC=60,所以船与灯塔的距离为60 km.3.选A.在ABC中,由余弦定理得AC2=AB2+BC2-2ABBCcos B,即AC2=25+64-258cos B=89-80cos B.在ADC中,由余弦定理得AC2=AD2+DC2-2ADDCcos D,即AC2=25+9-253cos D=34-30cos D.因为B与D互补,所以cos B=-cos D,所以-=,解得AC=7(km).4.选C.BC

4、=4所以离小岛C的距离为=2(+1)(海里).距离问题的常见类型及解法(1)类型:测量距离问题常分为三种类型:山两侧、河两岸、河对岸.(2)解法:选择合适的辅助测量点,构造三角形,将实际问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.秒杀绝招直角三角形解T1,记气球在地面的投影为D,在RtACD中,tan 60=,所以CD=60,在RtABD中,因为tan 15=,tan 15=tan(60-45)=2-,所以BD=120-60,所以BC=CD-BD=120(-1)(m).考点二测量高度问题【典例】1.一架直升飞机在200 m高度处进行测绘,测得一塔顶与塔底的俯角分别是30和60,

5、则塔高为()世纪金榜导学号A. mB. mC. mD. m2.如图,在水平地面上有两座直立的相距60 m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角.则从塔BB1的底部看塔AA1顶部的仰角的正切值为_;塔BB1的高为_m.世纪金榜导学号【解题导思】序号联想解题1由“测得一塔顶与塔底的俯角分别是30和60”,想到作图,建立数学模型2由“60 m”“从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍”“从两塔底部连线中点C分别看两塔顶部的仰角互为余角”,想到

6、A1AC CBB1【解析】1.选A.如图所示.在RtACD中,CD=BE,在ABE中,由正弦定理得=,所以AB=,DE=BC=200-=(m).2.设从塔BB1的底部看塔AA1顶部的仰角为,则AA1=60tan m,BB1=60tan 2 m.因为从两塔底部连线中点C分别看两塔顶部的仰角互为余角,所以A1ACCBB1,所以=,所以AA1BB1=900,所以3 600tan tan 2=900,所以tan =(负值舍去),所以tan 2=,BB1=60tan 2=45(m).答案:45求解高度问题的关注点1.在处理有关高度问题时,要理解仰角、俯角(在铅垂面上所成的角)、方向(位)角(在水平面上所

7、成的角)是关键.2.注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.1.某工厂实施煤改电工程防治雾霾,欲拆除高为AB的烟囱,测绘人员取与烟囱底部B在同一水平面内的两个观测点C,D,测得BCD=75,BDC=60,CD=40米,并在点C处的正上方E处观测顶部A的仰角为30,且CE=1米,则烟囱高AB=_米.【解析】CBD=180-BCD-BDC=45,在CBD中,由正弦定理得BC=20,所以AB=1+tan 30CB=1+20(米).答案:(1+20)2.在纪念抗战胜利七十周年阅兵式上举行升旗仪式,如图,在坡角为15的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和

8、最后一排测得旗杆顶端的仰角分别为60和30,且第一排和最后一排的距离为10 m,则旗杆的高度为_m.【解析】如图,设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=h.在ABC中,AB=10 m,CAB=45,ABC=105,所以ACB=30,由正弦定理得=,故h=30.答案:30考点三测量角度问题命题精解读考什么:航行方向问题,航行时间、速度问题等等.怎么考:考查运用正弦定理、余弦定理解决航向,时间,速度等实际问题.新趋势:运用正弦定理、余弦定理解决实际问题.学霸好方法1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.2.在实际问题中,可能会遇到空间与平

9、面(地面)同时研究的问题,这时可以画两个图形,一个空间图形,一个平面图形,这样将空间几何问题转化为平面几何问题,处理起来既清楚又不容易出现错误.方向问题【典例】如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的世纪金榜导学号()A.北偏东10B.北偏西10C.南偏东80D.南偏西80【解析】选D.由条件及题干图知,CAB=CBA=40,又BCD=60,所以CBD=30,所以DBA=10,因此灯塔A在灯塔B的南偏西80.解决测量角度问题时有哪些注意事项?提示:1.测量角度时,首先应明确方位角及方向角的含义.2.求角的大小时,先在三

10、角形中求出其正弦或余弦值.3.在解应用题时,要由已知正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理使用的优点.时间、速度问题【典例】如图,据气象部门预报,在距离某码头南偏东45方向600 km A处的热带风暴中心正以20 km/h的速度向正北方向移动,距风暴中心450 km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为世纪金榜导学号()A.14 hB.15 hC.16 h D.17 h【解析】选B.记现在热带风暴中心的位置为点A,t小时后热带风暴中心到达点B位置,在OAB中,OA=600 km,AB=20t km,OAB=45,由

11、余弦定理得OB2=6002+400t2-220t600,令OB24502,即4t2-120t+1 5750,解得t,所以该码头将受到热带风暴影响的时间为-=15(h).如何求解码头将受到热带风暴影响的时间?提示:已知热带风暴速度,所以将时间问题转化为路程问题,即求出码头受到热带风暴影响时的风暴路线长度.运用解三角形知识求解即可.1.如图所示,已知两座花坛A和B与教学楼C的距离相等,花坛A在教学楼C的北偏东40的方向上,花坛B在教学楼C的南偏东60的方向上,则花坛A在花坛B的_的方向上.【解析】由已知,ABC=(180-80)=50,所以花坛A在花坛B的北偏西10的方向上.答案:北偏西102.在

12、一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30,风速是20 km/h;水的流向是正东,流速是20 km/h,若不考虑其他因素,救生艇在洪水中漂行的速度的方向为北偏东_,大小为_km/h.【解析】如图AOB=60,由余弦定理知OC2=202+202-800cos 120=1 200,故OC=20,COY=30+30=60.答案:6020如图,在海岸A处发现北偏东45方向,距A处 (-1)海里的B处有一艘走私船.在A处北偏西75方向,距A处2海里的C处的我方缉私船奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处

13、向北偏东30方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.【解析】设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD= 10t海里,BD=10t海里,在ABC中,由余弦定理得,BC2=AB2+AC2-2ABACcos BAC=(-1)2+22-2(-1)2cos 120=6,解得BC=,又因为=,所以sinABC=,所以ABC=45,B点在C点的正东方向上,所以CBD=90+30=120,在BCD中,由正弦定理,得=,所以sinBCD=.所以BCD=30,缉私船沿北偏东60的方向行驶.又在BCD中,CBD= 120,BCD=30,所以D=30,所以BD=BC,即10t=,解得t=(小时)15(分钟).所以缉私船应沿北偏东60的方向行驶,才能最快截获走私船,大约需要15分钟.关闭Word文档返回原板块

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3