ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:216KB ,
资源ID:89504      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-89504-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《名师堂》2015-2016学年高一数学人教A版必修四教案:1.5 函数Y=ASIN(ΩX+Φ)的图象(一) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《名师堂》2015-2016学年高一数学人教A版必修四教案:1.5 函数Y=ASIN(ΩX+Φ)的图象(一) WORD版含答案.doc

1、1.5函数y=Asin(x+)的图象一、教学分析本节通过图象变换,揭示参数、A变化时对函数图象的形状和位置的影响,讨论函数y=Asin(x+)的图象与正弦曲线的关系,以及A、的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.这节是本章的一个难点. 如何经过变换由正弦函数y=sinx来获取函数y=Asin(x+)的图象呢?通过引导学生对函数ysinx到yAsin(x+)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学

2、会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系.本节课建议充分利用多媒体,倡导学生自主探究,在教师的引导下,通过图象变换和“五点”作图法,正确找出函数ysinx到yAsin(x+)的图象变换规律,这也是本节课的重点所在.二、教学目标:1、知识与技能借助计算机画出函数yAsin(x+) 的图象,观察参数,A对函数图象变化的影响;引导学生认识yAsin(x+) 的图象的五个关键点,学会用“五点法”画函数yAsin(x+)的简图;用准确的数学语言描述不同的变换过程. 2、过程与方法通过引导学生对函数ysinx到yAsin(x+

3、)的图象变换规律的探索, 让学生体会研究问题时由简单到复杂, 从具体到一般的思路, 一个问题中涉及几个参数时,一般采取先“各个击破”后“归纳整合”的方法.3、情感态度与价值观经历对函数ysin x到 yAsin(x+)的图象变换规律的探索过程,体会数形结合以及从特殊到一般的化归思想; 培养学生从不同角度分析问题,解决问题的能力.三、教学重点、难点:重点:将考察参数、对函数y=Asin(x+)图象的影响的问题进行分解,找出函数ysin x到yAsin(x+)的图象变换规律.学习如何将一个复杂问题分解为若干简单问题的方法.;会用五点作图法正确画函数yAsin(x+)的简图.难点:学生对周期变换、相

4、位变换顺序不同,图象平移量也不同的理解四、教学设想:函数y=Asin(x+)的图象(一)(一)、导入新课 思路1.(情境导入)在物理和工程技术的许多问题中,都要遇到形如y=Asin(x+)的函数(其中A、是常数).例如,物体做简谐振动时位移y与时间x的关系,交流电中电流强度y与时间x的关系等,都可用这类函数来表示.这些问题的实际意义往往可从其函数图象上直观地看出,因此,我们有必要画好这些函数的图象.揭示课题:函数y=Asin(x+)的图象. 思路2.(直接导入)从解析式来看,函数y=sinx与函数y=Asin(x+)存在着怎样的关系?从图象上看,函数y=sinx与函数y=Asin(x+)存在着

5、怎样的关系?接下来,我们就分别探索、A对y=Asin(x+)的图象的影响.(二)、推进新课、新知探究、提出问题观察交流电电流随时间变化的图象,它与正弦曲线有何关系?你认为可以怎样讨论参数、A对y=Asin(x+)的图象的影响?分别在y=sinx和y=sin(x+)的图象上各恰当地选取一个纵坐标相同的点,同时移动这两点并观察其横坐标的变化,你能否从中发现,对图象有怎样的影响?对任取不同的值,作出y=sin(x+)的图象,看看与ysinx的图象是否有类似的关系?你概括一下如何从正弦曲线出发,经过图象变换得到y=sin(x+)的图象.你能用上述研究问题的方法,讨论探究参数对y=sin(x+)的图象的

6、影响吗?为了作图的方便,先不妨固定为=,从而使y=sin(x+)在变化过程中的比较对象固定为y=sin(x+).类似地,你能讨论一下参数A对y=sin(2x+)的图象的影响吗?为了研究方便,不妨令=2,=.此时,可以对A任取不同的值,利用计算器或计算机作出这些函数在同一坐标系中的图象,观察它们与y=sin(2x+)的图象之间的关系.可否先伸缩后平移?怎样先伸缩后平移的? 活动:问题,教师先引导学生阅读课本开头一段,教师引导学生思考研究问题的方法.同时引导学生观察y=sin(x+)图象上点的坐标和y=sinx的图象上点的坐标的关系,获得对y=sin(x+)的图象的影响的具体认识.然后通过计算机作

7、动态演示变换过程,引导学生观察变化过程中的不变量,得出它们的横坐标总是相差的结论.并让学生讨论探究.最后共同总结出:先分别讨论参数、A对y=Asin(x+)的图象的影响,然后再整合.图1 问题,由学生作出取不同值时,函数y=sin(x+)的图象,并探究它与y=sinx的图象的关系,看看是否仍有上述结论.教师引导学生获得更多的关于对y=sin(x+)的图象影响的经验.为了研究的方便,不妨先取=,利用计算机作出在同一直角坐标系内的图象,如图1,分别在两条曲线上恰当地选取一个纵坐标相同的点A、B,沿两条曲线同时移动这两点,并保持它们的纵坐标相等,观察它们横坐标的关系.可以发现,对于同一个y值,y=s

8、in(x+)的图象上的点的横坐标总是等于y=sinx的图象上对应点的横坐标减去.这样的过程可通过多媒体课件,使得图中A、B两点动起来(保持纵坐标相等),在变化过程中观察A、B的坐标、xB-xA、|AB|的变化情况,这说明y=sin(x+)的图象,可以看作是把正弦曲线y=sinx上所有的点向左平移个单位长度而得到的,同时多媒体动画演示y=sinx的图象向左平移使之与y=sin(x+)的图象重合的过程,以加深学生对该图象变换的直观理解.再取=,用同样的方法可以得到y=sinx的图象向右平移后与y=sin(x)的图象重合. 如果再变换的值,类似的情况将不断出现,这时对y=sin(x+)的图象的影响的

9、铺垫已经完成,学生关于对y=sin(x+)的图象的影响的一般结论已有了大致轮廓.问题,引导学生通过自己的研究认识对y=sin(x+)的图象的影响,并概括出一般结论:y=sin(x+)(其中0)的图象,可以看作是把正弦曲线上所有的点向左(当0时)或向右(当1时)或伸长(当00,0)的图象,可以看作是把y=sin(x+)上所有点的纵坐标伸长(当A1时)或缩短(当0A0,0)的图象变化的影响情况.一般地,函数y=Asin(x+)(其中A0,0)的图象,可以看作用下面的方法得到:先画出函数ysinx的图象;再把正弦曲线向左(右)平移|个单位长度,得到函数y=sin(x+)的图象;然后使曲线上各点的横坐

10、标变为原来的倍,得到函数y=sin(x+)的图象;最后把曲线上各点的纵坐标变为原来的A倍,这时的曲线就是函数y=Asin(x+)的图象. 引导学生类比得出.其顺序是:先伸缩横坐标(或纵坐标),再伸缩纵坐标(或横坐标),最后平移.但学生很容易在第三步出错,可在图象变换时,对比变换,以引起学生注意,并体会一些细节. 由此我们完成了参数、A对函数图象影响的探究.教师适时地引导学生回顾思考整个探究过程中体现的思想:由简单到复杂,由特殊到一般的化归思想.(三)、讨论结果:把从函数y=sinx的图象到函数y=Asin(x+)的图象的变换过程,分解为先分别考察参数、A对函数图象的影响,然后整合为对y=Asi

11、n(x+)的整体考察.略略.图象左右平移,影响的是图象与x轴交点的位置关系.纵坐标不变,横坐标伸缩,影响了图象的形状.横坐标不变,纵坐标伸缩,A影响了图象的形状.(四)、规律总结:先平移后伸缩的步骤程序如下:y=sinx的图象得y=sin(x+)的图象得y=sin(x+)的图象得y=Asin(x+)的图象.先伸缩后平移(提醒学生尽量先平移),但要注意第三步的平移.y=sinx的图象得y=Asinx的图象得y=Asin(x)的图象得y=Asin(x+)的图象.(五)、应用示例例1 画出函数y=2sin(x-)的简图. 活动:本例训练学生的画图基本功及巩固本节所学知识方法.(1)引导学生从图象变换

12、的角度来探究,这里的,A2,鼓励学生根据本节所学内容自己写出得到y=2sin(x-)的图象的过程:只需把ysinx的曲线上所有点向右平行移动个单位长度,得到y=sin(x-)的图象;再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到y=sin(x-)的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到函数y=2sin(x-)的图象,如图4所示.图4(2)学生完成以上变换后,为了进一步掌握图象的变换规律,教师可引导学生作换个顺序的图象变换,要让学生自己独立完成,仔细体会变化的实质.(3)学生完成以上两种变换后,就得到了两种画函数y=2sin(x-),简图的方法,教师再

13、进一步的启发学生能否利用“五点法”作图画出函数y=2sin(x-)的简图,并鼓励学生动手按“五点法”作图的要求完成这一画图过程.解:方法一:画出函数y=2sin(x-)简图的方法为y=sinxy=sin(x-)y=sin(x-)y=2sin(x-).方法二:画出函数y=2sin(x-)简图的又一方法为y=sinxy=sinxy=2sinxy=2sin(x-)=2sin(x-).方法三:(利用“五点法”作图作一个周期内的图象)令X=x-,则x=3(X+).列表:X02X25Y020-20描点画图,如图5所示.图5 点评:学生独立完成以上探究后,对整个的图象变换及“五点法”作图会有一个新的认识.但

14、教师要强调学生注意方法二中第三步的变换,左右平移变换只对“单个”x而言,这点是个难点,学生极易出错.对于“五点法”作图,要强调这五个点应该是使函数取最大值、最小值以及曲线与x轴相交的点.找出它们的方法是先作变量代换,设X=x+,再用方程思想由X取0,2来确定对应的x值.(六)、课堂小结1.由学生自己回顾总结本节课探究的知识与方法,以及对三角函数图象及三角函数解析式的新的认识,使本节的总结成为学生凝练提高的平台.2.教师强调本节课借助于计算机讨论并画出y=Asin(x+)的图象,并分别观察参数、A对函数图象变化的影响,同时通过具体函数的图象的变化,领会由简单到复杂、特殊到一般的化归思想.(七)、作业

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3