1、1.2 独立性检验的基本思想及其初步应用课前预习学案一、 预习目标:能用所学的知识对实际问题进行回归分析,体会回归分析的实际价值与基本思想;了解判断刻画回归模型拟合好坏的方法相关指数和残差分析。二、预习内容1. 给出例3:一只红铃虫的产卵数和温度有关,现收集了7组观测数据列于下表中,试建立与之间的回归方程.温度21232527293235产卵数个711212466115325(学生描述步骤,教师演示)2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. 课内探究学案一、学习要求:通过典型案例的探究
2、,进一步了解回归分析的基本思想、方法及初步应用.学习重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.学习难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.二、学习过程: 1.独立性检验利用随机变量 来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验。2.判断结论成立的可能性的步骤:(1)通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度。(2)可以利用独立性检验来考察两个分类变量是否有关系,并且
3、能较精确地给出这种判断的可靠程度。3.残差分析: 残差:样本值与回归值的差叫残差,即. 残差分析:通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析. 残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图. 观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高. 4. 探究非线性回归方程的确定(结合例3): 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择
4、非线性回归模型来建模. 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y=的周围(其中是待定的参数),故可用指数函数模型来拟合这两个变量. 在上式两边取对数,得,再令,则,而与间的关系如下:X21232527293235z1.9462.3983.0453.1784.1904.7455.784观察与的散点图,可以发现变换后样本点分布在一条直线的附近,因此可以用线性回归方程来拟合. 利用计算器算得,与间的线性回归方程为,因此红铃虫的产卵数对温度的非线性回归方程为. 利用回归方程探究非线性回归问题,可按“作散点图建模确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问
5、题转化成线性回归问题.例3中的残差分析:计算两种模型下的残差一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果. 残差平方和越小的模型,拟合的效果越好.由于两种模型下的残差平方和分别为1450.673和15448.432,故选用指数函数模型的拟合效果远远优于选用二次函数模型. (当然,还可用相关指数刻画回归效果)5. 小结:用回归方程探究非线性回归问题的方法、步骤. 残差分析的步骤、作用。课后练习与提高为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:天数x/天 1 2 34 56繁殖个数y/个 6 12 25 49 95190(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为.)