1、八年级数学上册第十四章整式的乘法与因式分解定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、()A(-2)99B299C2D-22、下列运算结果正确的是()Aa2+a4a6Ba2a3a6C(a2)3
2、a6Da8a2a63、已知,当时,则的值是()ABCD4、计算:的结果是()ABCD5、计算(a+3)(a+1)的结果是()Aa22a+3Ba2+4a+3Ca2+4a3Da22a36、下列计算正确的是()ABCD7、下列运算正确的是()ABCD8、下列运算中正确的是()Aa5 + a5 = a10B(ab)3 = a3b3C(x4)3 = x7Dx2 + y2 =(x+y)29、若,则的值分别为()A9,5B3,5C5,3D6,1210、化简(a2)2a(5a)的结果是()Aa4B3a4C5a4Da24第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a2b1,则32a
3、4b的值是_2、(1)_;(2)_;(3)_;(4)_;(5)_;(6)_3、已知x2+mx+16能用完全平方公式因式分解,则m的值为 _4、分解因式:_5、分解因式:5x25y2_三、解答题(5小题,每小题10分,共计50分)1、阅读:已知、为的三边长,且满足,试判断ABC的形状【解析】解:因为,所以所以所以是直角三角形请据上述解题回答下列问题:(1)上述解题过程,从第_步(该步的序号)开始出现错误,错的原因为_;(2)请你将正确的解答过程写下来2、(1)化简: (2)解不等式组: 3、阅读材料并解答下列问题你知道吗?一些代数恒等式可以用平面图形的面积来表示,例如(2ab)(ab)2a23a
4、bb2就可以用图甲中的或的面积表示(1)请写出图乙所表示的代数恒等式;(2)画出一个几何图形,使它的面积能表示(ab)(a3b)a24ab3b2;(3)请仿照上述式子另写一个含有a,b的代数恒等式,并画出与之对应的几何图形4、运用乘法公式进行计算(1) (2)5、已知是多项式的一个因式,求a,b的值,并将该多项式因式分解-参考答案-一、单选题1、B【解析】【分析】利用乘方的定义变形为,合并即可得到答案【详解】故选:B【考点】本题主要考查了积的乘方、整式的加减,解题的关键是掌握积的乘方及整式加减运算法则2、D【解析】【分析】根据整式的运算直接进行排除选项即可【详解】解:A、a2+a4,无法合并,
5、故此选项错误;B、a2a3a5,故此选项错误;C、(a2)3a6,故此选项错误;D、a8a2a6,正确;故选:D【考点】本题主要考查整式的运算,熟练掌握整式的运算是解题的关键3、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口4、B【解析】【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可【详解】解:原式故选B【考点】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键5、A【解析】【分析】运用多项式乘多项式法则,直
6、接计算即可【详解】解:(a+3)(a+1)a23a+a+3a22a+3故选:A【考点】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加6、C【解析】【分析】直接利用同底数幂的乘除运算法则、幂的乘方和积的乘方运算法则分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项正确;D、,故此选项错误;故选C【考点】此题主要考查了同底数幂的乘除运算、幂的乘方和积的乘方运算,正确掌握相关运算法则是解题关键7、D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底
7、数幂的乘除运算法则及完全平方公式分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确;故选:D【考点】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键8、B【解析】【分析】根据合并同类项,单项式的除法,幂的乘方,完全平方公式进行计算,再选择即可【详解】解:A.a5+a5=2 a5,选项错误;B.(ab)3 = a3b3,故选项正确;C.(x4)3 = x12,故选项错误;D.(x+y)2= x2 +2xy+ y2,故选项正确故选B【考点】本题考查了同类项的定义,同底数幂的乘法,积
8、的乘方的性质,要求学生对于这些知识比较熟悉才能很好解决这类题目9、B【解析】【分析】根据积的乘方法则展开得出a3mb3n=a9b15,推出3m=9,3n=15,求出m、n即可【详解】解:(ambn)3=a9b15,a3mb3n=a9b15,3m=9,3n=15,m=3,n=5,故选B10、A【解析】【分析】先根据完全平方公式和单项式乘多项式法则计算,再合并同类项即可求解.【详解】a(5a)=a+4.故选A.【考点】本题考查整式的混合运算,完全平方公式,关键是掌握完全平方公式.二、填空题1、1【解析】【分析】先把代数式32a+4b化为32(a2b),再把已知条件整体代入计算即可.【详解】根据题意
9、可得:32a+4b=32(a2b)=32=1.故答案为:1.【考点】本题考查了代数式求值.注意此题要用整体思想.2、 或 或64; 【解析】【分析】(1)根据幂的乘方计算即可;(2)根据幂的乘方计算即可;(3)根据幂的乘方计算化为底数是3,也可按幂的乘方逆运算化为底数为27即可;(4)根据幂的乘方计算,再算负数的偶次幂即可;(5)根据幂的乘方计算,再算负数的偶次幂即可;(6)根据积的乘方,再算幂的乘方计算即可【详解】解:(1);(2);(3);(4);(5);(6)故答案为(1);(2);(3)或;(4)或64;(5);(6)【考点】本题考查积的乘方与幂的乘方,掌握积的乘方与幂的乘方法则是解题
10、关键3、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】解:要使得能用完全平方公式分解因式,应满足,故答案为:【考点】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键4、【解析】【分析】原式利用十字相乘法分解即可【详解】原式=(x-2)(x+5),故答案为:(x-2)(x+5)【考点】此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键5、【解析】【分析】先提公因数5,然后根据平方差公式因式分解即可【详解】解:5x25y2故答案为:【考点】本题考查了分解因式,掌握平方差公式是解题的关键三、解答题1、(1),忽略了
11、的情况;(2)见解析【解析】【分析】(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解【详解】解:(1)由题意可得:从第步开始错误,错的原因为:忽略了的情况;故答案为;忽略了的情况;(2)正确的写法为:当时,;当时,;所以是直角三角形或等腰三角形或等腰直角三角形【考点】本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键2、(1)4-x;(2)x-2【解析】【分析】(1)根据平方差公式和合并同类项的性质计算,即可得到答案;(2)根据一元一次不等式组的性质计算,即可得到答案【详解】(1) ;(2)由得:;由得:的解集为:【考点】本题考查了整
12、式运算、一元一次不等式组的知识;解题的关键是熟练掌握平方差公式、一元一次不等式组的性质,从而完成求解3、(1)(a2b)(2ab)2a25ab2b2(2)见解析(3) (a2b)(a3b)a25ab6b2【解析】【分析】(1)根据长方形的面积=长宽,即可解决问题(2)画一个长为(a+3b),宽为(a+b)的长方形即可(3)任意写一个一个只含有a,b的等式,根据长方形的面积公式,确定长与宽,再利用分割法画出图形即可【详解】(1)(a2b)(2ab)2a25ab2b2(2)画法不唯一,如图所示:(3)答案不唯一,例如:(ab)(a2b)a23ab2b2可以用下图表示:【考点】本题考查多项式乘多项式
13、,长方形的面积等知识,解题的关键是理解题意,是数形结合的好题目,这里的等式左右两边分别表示长方形的面积的两种求法4、(1)(2)【解析】【分析】(1)把两个式子变形,利用平方差公式和完全平方公式计算即可;(2)第一个式子出负号变形,运用平方差公式计算;【详解】(1),=,=;(2),=,=,=,=【考点】本题主要考查了平方差公式完全平方公式的应用,在解题过程中准确变形是解题的关键5、,【解析】【分析】由题意可假设多项式x3x2+ax+b=(x2+2x+1)(x+m),则将其展开、合并同类项,并与x3 x2+ax+b式子中x的各次项系数对应相等,依次求出m、b、a的值,那么另外一个因式即可确定【详解】解:设, 则,所以,解得,所以 【考点】本题考查了因式分解的应用,用待定系数法来解较好