1、八年级数学上册第十四章整式的乘法与因式分解同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知m2n2nm2,则的值是()A1B0C1D2、分解因式4x2y2的结果是()A(4x+y)(4xy)B
2、4(x+y)(xy)C(2x+y)(2xy)D2(x+y)(xy)3、已知,则的值为()ABCD4、下列等式从左到右变形,属于因式分解的是()A(a+b)(ab)a2b2Bx22x+1(x1)2C2a1a(2)Dx2+6x+8x(x+6)+85、已知4x2-2(k+1)x+1是一个完全平方式,则k的值为()A2B2C1D1或-36、将多项式xx3因式分解正确的是()Ax(x21)Bx(1x2)Cx(x+1)(x1)Dx(1+x)(1x)7、计算的结果是()ABCD8、若2n+2n+2n+2n=2,则n=()A1B2C0D9、不论x、y为什么实数,代数式的值()A可为任何实数B不小于7C不小于2
3、D可能为负数10、若x2+ax(x+)2+b,则a,b的值为()Aa1,bBa1,bCa2,bDa0,b第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将代数式分解因式的结果是_2、已知2m3n=4,则代数式m(n4)n(m6)的值为_3、因式分解:_4、如图,要设计一幅长为3xcm,宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm,竖彩条的宽度为bcm,问空白区域的面积是_5、计算:=_三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)(2)2、已知有理数m,n满足(mn)29,(mn)21.求下列各式的值(1)mn;(2)m2n2
4、mn.3、先化简,再求值:,其中4、已知,求下列各式的值:(1)(2)5、(1)若、是三角形的三条边,求证:(2)在中,三边分别为、,且满足,试探究的形状(3)在中,三边分别为、,且满足,试探究的形状-参考答案-一、单选题1、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键2、C【解析】【分析】按照平方差公式进行因式分解即可.【详解】解:4x2y2(2x+y)(2xy
5、)故选:C【考点】此题主要考查了公式法分解因式,正确应用公式是解题关键3、A【解析】【分析】先利用已知条件得到x212x,利用整体代入得到原式,利用多项式乘多项式得到原式,再将x212x代入进而可求得答案【详解】解:,故选:A【考点】本题考查了整体代入的方法,整式乘法的运算法则,灵活运用整体思想及熟练掌握整式乘法的运算法则是解决本题的关键4、B【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式根据定义即可进行判断【详解】解:A(a+b)(ab)a2b2,原变形是整式乘法,不是因式分解,故此选项不符合题意;Bx22x+1(x1)2,把一个多项式化
6、为几个整式的积的形式,原变形是因式分解,故此选项符合题意;C2a1a(2),等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;Dx2+6x+8x(x+6)+8,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B【考点】本题主要考查了因式分解的定义解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算5、D【解析】【分析】利用完全平方公式的结构特征判断即可确定出k的值【详解】解:4x2-2(k+1)x+1是关于x的完全平方式,2(k+1)=4,解得:k=1或k=-3,故选:D【考点】此题考查了完全平方式,熟练掌握
7、完全平方公式是解本题的关键6、D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案【详解】xx3=x(1x2)=x(1x)(1+x)故选D【考点】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键7、B【解析】【分析】根据幂的乘方的性质和同底数幂的乘法计算即可.【详解】解:=故选B.【考点】本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.8、A【解析】【分析】利用乘法的意义得到42n=2,则22n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可【详解】2n+2n+2n+
8、2n=2,42n=2,22n=1,21+n=1,1+n=0,n=-1,故选A【考点】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即aman=am+n(m,n是正整数)9、C【解析】【分析】要把代数式进行拆分重组凑完全平方式,来判断其值的范围具体如下:【详解】(x22x1)(y24y4)2(x1)2(y2)22,(x1)20,(y2)20,(x1)2(y2)222,2故选:C【考点】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围要求掌握完全平方公式,并会熟练运用10、B【解析】【分析】
9、根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解【详解】解:x2+ax(x+)2+b=x2+x+b,a=1,+b=0,a1,b,故选B【考点】本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键二、填空题1、【解析】【分析】先利用平方差公式将式子展开,再利用十字相乘法进行因式分解【详解】解:原式=故答案为【考点】本题考查了因式分解及多项式乘以多项式熟练掌握十字相乘法是解题的关键2、8【解析】【详解】解:2m3n=4,原式=mn4mmn+6n=4m+6n=2(2m3n)=2(4)=8,故答案为:83、【解析】【分析】两次运用平方差公式进行因式分解即可得到答案【详解】解:=故答案
10、为:【考点】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键4、(6xy6xa4by+4ab)cm2【解析】【分析】可设想将彩条平移到如图所示的长方形的靠边处,则该长方形的面积就是空白区域的面积,这个大长方形长(3x2b)cm,宽为(2y2a)cm,根据矩形的面积公式求解即可【详解】解:可设想将彩条平移到如图所示的长方形的靠边处,将9个小矩形组合成“整体”,一个大的空白长方形,则该长方形的面积就是空白区域的面积而这个大长方形长(3x2b)cm,宽为(2y2a)cm所以空白区域的面积为(3x2b)(2y2a)cm2即(6xy6xa4by+4ab)cm2故答案为:(6xy6x
11、a4by+4ab)cm2【考点】本题考查了空白区域面积的问题,掌握平移的性质、矩形的面积公式是解题的关键5、#【解析】【分析】原式利用平方差公式化简即可【详解】故答案为:【考点】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键三、解答题1、(1);(2)【解析】【分析】(1)提取公因式-2a后,对剩下的因式再运用十字相乘法进行因式分解即可;(2)原式利用平方差公式分解后,合并同类项即可得到答案.【详解】(1) ;(2);【考点】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.2、(1)mn
12、2;(2)3【解析】【详解】试题分析:(1)、根据mn=得出答案;(2)、根据得出答案试题解析:(1)、原式=(2)、原式=3、,1【解析】【分析】先计算完全平方公式、平方差公式、单项式乘以多项式,再计算整式的加减,然后将的值代入即可得【详解】解:原式,将代入得:原式【考点】本题考查了整式的化简求值,熟练掌握整式的运算法则是解题关键4、(1);(2)【解析】【分析】(1)已知第一个等式左边利用平方差公式分解,将x-y的值代入求出x+y的值,再利用完全平方公式变形,即可求出所求式子的值;(2)利用求得的x+y的值,直接利用完全平方公式即可求出所求式子的值【详解】,(1),;(2),【考点】本题考
13、查了平方差公式和完全平方公式,解决本题的关键是熟记公式的结构特征5、(1)见解析;(2)是等边三角形,见解析;(3)是等腰三角形,见解析【解析】【分析】(1)用分组分解法进行因式分解,先变形为,再用完全平方公式和平方差公式分解,然后根据三角形三边关系即可证明;(2)由题意可得结合可得,故可得到,整理得用非负性可求得a、b、c的数量关系,于是可作出判断;(3)对进行因式分解,得到据此可解【详解】解:(1)、是三角形三边,且即(2)是等边三角形,理由如下:,又,是等边三角形(3)是等腰三角形,理由如下:=0或或是等腰三角形【考点】本题考查了因式分解的应用,灵活运用提公因式法、公式法、分组分解法进行因式分解是解题的关键.