1、人教版八年级数学上册第十五章分式重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的方程有增根,则m的值为()A2B1C0D2、化简的结果为,则()A4B3C2D13、在一段坡路,小明骑自行
2、车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A千米B千米C千米D无法确定4、化简(a1)(1)a的结果是()Aa2B1Ca2D15、若关于的分式方程有增根,则的值为()A2B3C4D56、已知,则代数式的值是()ABCD7、已知,则分式与的大小关系是()ABCD不能确定8、若a+b=5,则代数式(a)()的值为()A5B5CD9、九章算术中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间设规定时间为x天,则可列方程
3、为()ABCD10、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程的根为负数,则k的取值范围是_。2、计算的结果是_3、如果分式有意义,那么的取值范围是_4、已知,则_5、计算:()01_三、解答题(5小题,每小题10分,共计50分)1、计算:(1)()3()2(2)()2、计算(1)(2)3、阅读理解,并解决问题.分式方程的增根:解分式方程时可能会产生增根,原
4、因是什么呢?事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程时产生了增根,这个增根是 ;(2)小明认为解分式方程时,不会产生增根,请你直接写
5、出原因;(3)解方程4、先化简,再求值:,其中满足方程5、先化简,(x2),然后从2x2范围内选取一个合适的整数作为x的值代入求值-参考答案-一、单选题1、B【解析】【分析】先通过去分母把分式方程化为整式方程,再把增根代入整式方程,求出参数m,即可【详解】解:把原方程去分母得:,原分式方程有增根:x=1,即:m=1,故选B【考点】本题主要考查分式方程增根的意义,理解使分式方程的分母为零的根,是分式方程的增根,是解题的关键2、A【解析】【分析】根据分式的运算法则即可求出答案【详解】解:依题意得:,故选:【考点】本题考查分式的运算,解题的关键是熟练运用分式的运算法则3、C【解析】【详解】平均速度=
6、总路程总时间,题中没有单程,可设单程为1,那么总路程为2依题意得:2()=2=千米故选C【考点】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系当题中没有一些必须的量时,为了简便,可设其为14、A【解析】【分析】根据分式的混合运算顺序和运算法则计算可得【详解】原式=(a1)a=(a1)a=a2,故选A【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则5、D【解析】【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可.【详解】解:分式方程有增根,去分母,得,将代入,得,解得故选:D【考点】本题考查了分式方程的无解问题,掌握分式方程中增根的
7、定义及增根产生的原因是解题的关键6、D【解析】【分析】利用等式的性质对变形可得,利用分式的性质对变形可得,从而代入求值即可【详解】由条件可知,即:,根据分式的性质得:,将代入上式得:原式,故选:D【考点】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键7、A【解析】【分析】将两个式子作差,利用分式的减法法则化简,即可求解【详解】解:,故选:A【考点】本题考查分式的大小比较,掌握作差法是解题的关键8、B【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值【详解】a+b=5,原式 故选:B【考点】考查分式的化简求值,掌握减法法则
8、以及除法法师是解题的关键,注意整体代入法在解题中的应用9、A【解析】【分析】根据题意先求得快马的速度和慢马的速度,根据快马的速度是慢马的2倍列分式方程即可【详解】设规定时间为x天,慢马的速度为,快马的速度为,则故选A【考点】本题考查了分式方程的应用,根据题意找到等量关系是解题的关键10、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键二、填空题1、k2且k3【解析】【分析】方程两边都乘以(x+3)(x+k),化成整式
9、方程,然后解关于x的一元一次方程,再根据解是负数得到关于k的一元一次不等式,解不等式即可,再根据分式方程的分母不等于0求出x-3,列式求出k的值,然后联立即可得出答案【详解】解:方程两边都乘以(x+3)(x+k)得,3(x+k)=2(x+3),解得x=-3k+6,方程的解是负数,-3k+60,解得k2,又x+30,x+k0,x-3,x-k-3k+6-3, -3k+6-kk3,k2且k3故答案为:k2且k3【考点】本题考查了分式方程的解的应用,以及一元一次不等式的解法,需要注意方程的分母不等于0的情况得到k的另一范围,是一道比较容易出错的题目2、【解析】【分析】先通分,再相加即可求得结果【详解】
10、解:,故答案为:【考点】此题考察分式的加法,先通分化为同分母分式再相加即可3、且#x-3且x1【解析】【分析】根据分式有意义的条件,零指数幂的运算法则列不等式求解【详解】解:由题意可得:,且,故答案为:且【考点】本题考查分式有意义的条件,零指数幂的运算,解题的关键是掌握分式有意义的条件(分母不能为零),4、【解析】【分析】根据分式的基本性质,由可得,然后代入式子进行计算即可得解【详解】解:,则故答案为:【考点】本题考查了分式的化简求值,掌握分式的基本性质并能灵活运用性质进行分式的化简求值是解题的关键5、2【解析】【分析】直接利用零指数幂的性质化简得出答案【详解】解:原式故答案为:2【考点】此题
11、主要考查了实数运算,正确掌握运算法则是解题关键三、解答题1、(1);(2)【解析】【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【详解】解:(1)原式();(2)原式【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则2、(1)7;(2)【解析】【分析】(1)先分别计算乘方、绝对值、负整数指数幂、零指数幂,再计算乘法,最后计算加减;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可求解【详解】(1)原式846184217;(2)原式【考点】本题主要考查实数和分式的混合运算,解题的关键
12、是掌握绝对值的性质、负整数指数幂、零指数幂及分式的混合运算顺序和运算法则3、(1)x=2;(2)见解析;(3)无解【解析】【分析】(1)由题意直接看出即可.(2)找到最简公分母,判断最简公分母的范围即可.(3)利用分式方程的运算方法解出即可.【详解】(1)(2)原分式方程的最简公分母为,而解这个分式方程不会产生增根.(3)方程两边同乘,得解得:经检验:当时,所以,原分式方程无解.【考点】本题考查分式方程的增根,关键在于理解增根的意义.4、,1【解析】【分析】先计算分式的减法,再计算分式的除法,然后利用因式分解法解一元二次方程求出x的值,最后结合分式的分母不能为0确定合适的x的值,代入求解即可得【详解】,因式分解得,解得或,分式的分母不能为0,解得,则,将代入分式得:原式【考点】本题考查了分式的化简求值、解一元二次方程等知识点,熟练掌握分式的运算法则和分式有意义的条件是解题关键5、x+3,2【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得【详解】解:原式= = =(x3)=x+3x 2,可取x1,则原式1+32【考点】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件