1、人教版八年级数学上册第十五章分式定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,为实数且满足,设,若时,;若时,;若时,;若,则则上述四个结论正确的有()A1B2C3D42、解分式方程时,去
2、分母化为一元一次方程,正确的是()Ax+23Bx23Cx23(2x1)Dx+23(2x1)3、若a0.32,b(3)2,c()2,d()0,则()AabcdBabdcCadcbDcadb4、若分式 的值为0,则x 的值是()A2B0C-2D-55、如果,那么代数式的值为ABCD6、学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式其中正确的是()A小明B小亮C小芳D没有正确的7、的结果是()ABCD18、若分式在实数范围内有意义,则实数x的取值范围是()Ax2Bx2Cx=2Dx29、九章算术中记录的一道题译为白话文是:把一份文件用慢马送到900里外的
3、城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间设规定时间为x天,则可列方程为()ABCD10、当时,下列分式没有意义的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列各式:,请利用你观察所得的结论,化简代数式(且n为整数),其结果是_2、化简:(1_3、若关于x的分式方程有正整数解,则整数m为 _4、若关于x的分式方程的解为正数,则满足条件的非负整数k的值为_5、若关于x的分式方程1无解,则m_三、解答题(5小题,每小题10分,共计50分)1、为保障蔬菜基地种植用水,需要修建灌溉水
4、渠(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工甲施工队按(1)中增加人员后的修建速度进行施工乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同求乙施工队原来每天修建灌溉水渠多少米?2、已知ab2018,求代数式的值3、阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(JNplcr,1550-1617年),
5、纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系对数的定义:一般地,若ax=N(a0,a1),那么x叫做以a为底N的对数,记作:x=logaN比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:设logaM=m,logaN=n,则M=am,N=anMN=aman=am+n,由对数的定义得m+n=loga(MN)又m+n=logaM+logaNloga(MN)=log
6、aM+logaN解决以下问题:(1)将指数43=64转化为对数式: .(2)仿照上面的材料,试证明: =(a0,al,M0,N0).(3) 拓展运用:计算log32+log36-log34=_.4、计算(1)(2)5、计算:-参考答案-一、单选题1、B【解析】【分析】先求出对于当时,可得,所以正确;对于当时,不能确定的正负,所以错误;对于当时,不能确定的正负,所以错误;对于当时,正确【详解】,当时,所以,正确;当时,如果,则此时,错误;当时,如果,则此时,错误;当时,正确故选B【考点】本题关键在于熟练掌握分式的运算,并会判断代数式的正负2、C【解析】【分析】最简公分母是2x1,方程两边都乘以(
7、2x1),即可把分式方程便可转化成一元一次方程【详解】方程两边都乘以(2x1),得x23(2x1),故选C【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根3、B【解析】【详解】a0.32=-0.09,b(3)2=,c=9,d=1,abdc.故选B.4、A【解析】【分析】根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值【详解】解: 根据题意得 :x-2=0,且x+50,解得 x=2故选:A【考点】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零5、A【解析】【详解】分析:根据分式混
8、合运算的法则进行化简,再把整体代入即可.详解:原式,原式故选A.点睛:考查分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.6、C【解析】【详解】=1所以正确的应是小芳故选C7、B【解析】【分析】先计算分式的乘方,再把除法转换为乘法,约分后即可得解【详解】解:故选:B【考点】此题主要考查了分式的混合运算,熟练掌握运算法则是解答此题的关键8、D【解析】【分析】直接利用分式有意义的条件分析得出答案【详解】代数式在实数范围内有意义,x+20,解得:x2,故选D【考点】本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键9、A【解析】【分析】根据题意先求得快马的速度和慢马的
9、速度,根据快马的速度是慢马的2倍列分式方程即可【详解】设规定时间为x天,慢马的速度为,快马的速度为,则故选A【考点】本题考查了分式方程的应用,根据题意找到等量关系是解题的关键10、B【解析】【分析】由分式有意义的条件分母不能为零判断即可.【详解】,当x=1时,分母为零,分式无意义.故选B.【考点】本题考查分式有意义的条件,关键在于牢记有意义条件.二、填空题1、【解析】【分析】根据所列的等式找到规律,由此计算的值【详解】,故答案为:【考点】本题主要考查了数字变化类以及分式的加减,此题在解答时,看出的是左右数据的特点是解题关键2、【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得
10、到结果【详解】(1+)=,故答案为.【考点】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法3、0【解析】【分析】先解分式方程,再根据有正整数解及分母不为0进行求解即可【详解】方程两边同乘,得解得分式方程有正整数解即即故答案为:0【考点】本题考查解分式方程及分式方程正整数根的情况,注意分母不等于0是解题的关键4、0【解析】【分析】首先解分式方程,然后根据方程的解为正数,可得x0,据此求出满足条件的非负整数K的值为多少即可【详解】,x0,满足条件的非负整数的值为0、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;满足条件的非负整数的值为0故答案为:0【考点】此题
11、考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解5、2【解析】【分析】去分母,将分式方程转化为整式方程,根据分式方程有增根时无解求m的值【详解】解:1,方程两边同时乘以x1,得2x(x1)m,去括号,得2xx1m,移项、合并同类项,得xm1,方程无解,x1,m11,m2,故答案为2【考点】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.三、解答题1、 (1)100米(2)90米【解析】
12、【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x米,原来每天修建米,根据工效问题公式:工作总量工作时间工作效率,列出关于x的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y米,技术更新后每天修建米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y的分式方程,解方程即可得出答案(1)解:设甲施工队增加人员后每天修建灌溉水渠x米,原来每天修建米,则有解得甲施工队增加人员后每天修建灌溉水渠100米(2)水渠总长1800米,完工时,两施工队修建长度相同两队修建的长度都为1800
13、2900(米)乙施工队技术更新后,修建长度为900360540(米)解:设乙施工队原来每天修建灌溉水渠y米,技术更新后每天修建米,即1.2y米则有解得经检验,是原方程的解,符合题意乙施工队原来每天修建灌溉水渠90米【考点】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键2、4036【解析】【详解】试题分析:根据分式的乘除法,先对分子分母分解因式,然后把除法化为乘法,再约分,然后代入求值.试题解析:原式(ab)(ab)2(ab)ab2 018,原式22 0184 036.3、(1)3=log464;(2)见解析;(3)1【解析】【
14、分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:loga(MN)=logaM+logaN和loga=logaM-logaN的逆用,将所求式子表示为:log3(264),计算可得结论【详解】(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为3=log464;(2)设logaM=m,logaN=n,则M=am,N=an,=am-n,由对数的定义得m-n=loga,又m-n=logaM-logaN,loga=loga
15、M-logaN(a0,a1,M0,N0);(3)log32+log36-log34,=log3(264),=log33,=1,故答案为1【考点】此题考查整式的混合运算,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.4、(1)7;(2)【解析】【分析】(1)先分别计算乘方、绝对值、负整数指数幂、零指数幂,再计算乘法,最后计算加减;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可求解【详解】(1)原式846184217;(2)原式【考点】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值的性质、负整数指数幂、零指数幂及分式的混合运算顺序和运算法则5、x=-,得4y=8,y=2所以原方程组的解为;(2),去分母,得6=3(1+x),去括号,得6=3+3x,移项合并,得3x=3,系数化为1,得x=1经检验,x=1是原方程的增根所以原方程无解【考点】本题考查了解二元一次方程组和解分式方程,能把二元一次方程组转化成一元一次方程是解二元一次方程组的关键,能把分式方程转化成整式方程是解分式方程的关键3.【解析】【分析】最简公分母为(ab)(ab),所以通分得,然后对分子运算,得,最后约分.【详解】【考点】在进行分式的加减运算时,在通分前如果分子分母有相同的项,要注意先把相同项约掉,且一定要保持最终的结果是最简分式.