1、人教版八年级数学上册第十五章分式专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的分式方程无解,且关于y的不等式组有且只有三个偶数解,则所有符合条件的整数m的乘积为()A1B2C4D82
2、、方程的解是()Ax2Bx1Cx1Dx33、计算的结果是( )ABCD4、化简得()ABCD5、约分:()ABCD6、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟7、关于x的分式方程30有解,则实数m应满足的条件是()Am2Bm2Cm2Dm28、一列火车长米,以每秒米的速度通过一个长为米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A秒B秒C秒D秒9、如果,那么代数式的值为ABCD10、将的分母化为整
3、数,得()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解为_2、若,则_3、某校为推进“数学文化智慧阅读”活动,采购了一批图书其中九章算术)和几何原本的单价共80元,用640元购进九章算术与用960元购进几何原本的数量相同求这两本书的单价设九章算术的单价为x元,依题意,列出方程:_4、当时,式子的值为_5、(1)_;(2)_;(3)_;(4)_三、解答题(5小题,每小题10分,共计50分)1、解下列分式方程:(1)(2)2、阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当mn时,m2nmn2可是我见到有这样一个神奇的等式:()2
4、()2(其中a,b为任意实数,且b0)你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立;当a2,b3时,等式_(填写“成立”或“不成立”);当a3,b5时,等式_(填写“成立”或“不成立”)(2)对于任意实数a,b(b0),通过计算说明()2()2是否成立3、计算:(1)(2)4、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度5、
5、解方程:(1)(2)-参考答案-一、单选题1、B【解析】【分析】分式方程无解的情况有两种,第一种是分式方程化成整式方程后,整式方程无解,第二种是分式方程化成整式方程后有解,但是解是分式方程的增根,以此确定m的值,不等式组整理后求出解集,根据有且只有三个偶数解确定出m的范围,进而求出符合条件的所有m的和即可【详解】解:分式方程去分母得:,整理得:,分式方程无解的情况有两种,情况一:整式方程无解时,即时,方程无解,;情况二:当整式方程有解,是分式方程的增根,即x=2或x=6,当x=2时,代入,得:解得:得m=4当x=6时,代入,得:,解得:得m=2综合两种情况得,当m=4或m=2或,分式方程无解;
6、解不等式,得:根据题意该不等式有且只有三个偶数解,不等式组有且只有的三个偶数解为8,6,4,4m42,0m2,综上所述当m=2或时符合题目中所有要求,符合条件的整数m的乘积为21=2故选B【考点】此题考查了分式方程的无解的问题,以及一元一次不等式组的偶数解,其中分式方程无解的情况有两种情况,一种是分式方程化成整式方程后整式方程无解,另一种是化成整式方程后有解,但是解为分式方程的增根,易错点是容易忽略某种情况;对于已知一元一次不等式组解,求参数的值,找到参数所表示的代数式的取值范围是解题关键2、D【解析】【分析】根据解分式方程的方法求解,即可得到答案【详解】 经检验,当时,与均不等于0方程的解是
7、:x3故选:D【考点】本题考查了解分式方程的知识点;解题的关键是熟练掌握分式方程的解法,从而完成求解3、A【解析】【分析】直接利用分式的加减运算法则计算得出答案【详解】原式,故选:A【考点】本题考查分式的加减运算法则,比较基础4、A【解析】【分析】异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减【详解】解:-x+1=-(x-1)=-=故选:A【考点】本题考查了分式的加减运算,熟练通分是解题的关键5、A【解析】【分析】先进行乘法运算,然后约去分子分母的公因式即可得到答案.【详解】原式=,故选A.【考点】本题主要考查分式的
8、乘法运算法则,掌握约分,是解题的关键.6、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键7、B【解析】【分析】解分式方程得:即,由题意可知,即可得到.【详解】解:方程两边同时乘以得:,分式方程有解,故选B.【考点】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.8、A【解析】【分析】【详解】火车走过的路程为米,火车的速度为米秒,火车过桥的时间为(秒故选:9、A【解析】【详解
9、】分析:根据分式混合运算的法则进行化简,再把整体代入即可.详解:原式,原式故选A.点睛:考查分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.10、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键二、填空题1、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可【详解】解:故答案为:【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键2、【解析】【分析】根据负整数指数幂的逆运算解答即可【详
10、解】x-3n=6,.故答案是:.【考点】考查负整数指数幂问题,解题关键是计算负整数指数幂时,一定要根据负整数指数幂的意义变形3、【解析】【分析】设九章算术的单价为x元,几何原本的单价为(80-x)元,根据等量关系:用640元购进九章算术与用960元购进几何原本的数量相同列方程即可【详解】解:设九章算术的单价为x元,几何原本的单价为(80-x)元,依题意,列出方程:故答案为:【考点】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列方程是解题关键4、-1【解析】【分析】先将原式括号内通分计算,再将两因式分子、分母因式分解,约分后代入求值即可【详解】解:= = 原式=1
11、-2=-1故答案为:-1【考点】本题主要考查了分式的化简求值,熟练掌握运算法则是解答本题的关键5、 【解析】【分析】根据分式乘方的运算法则计算即可;【详解】解:(1),(2)(3),(4),故答案为:,【考点】本题考查了分式的乘方,熟练掌握运算法则是解题的关键三、解答题1、(1)x=1(2)【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是否使得公分母为0,即可得到分式方程的解【详解】(1)等式两边同乘以(1-2x)得:2x-3-(1-2x)=0,去括号得:2x-3-1+2x=0,移项合并得:4x=4,解得:x=1经检验:x=1时,1-2x0,则x=1是原分式
12、方程的解(2)等式两边同乘以(3x-4)得:5x=-1-2(3x-4), 去括号得:5x=-1-6x+8,移项合并得:11x=7, 解得:经检验:时,3x-40,则是原分式方程的解【考点】本题考查了分式方程,解题的关键是掌握分式方程的计算方法,根据题目先将分式方程去分母转化为整式方程,在求出整式方程的解得到x的值,分式方程不要忘记验根2、(1)成立;成立;(2)成立【解析】【分析】(1)把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;(2)分别把等式两边通分并化简,结果相等则成立,否则不成立【详解】(1)成
13、立;成立(2)左边()2,右边()2所以等式()2()2成立【考点】本题考查了求代数式的值,分式加法运算,体现了由特殊到一般的数学思想,掌握分式的加法运算法则是关键3、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键4、15千米/时【解析】【分析】根据时间来列等量关系关键描述语为:“过了20分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间-乘车同学所
14、用时间=【详解】设骑车同学的速度为x千米/时则:解得:x15检验:当x15时,6x0,x15是原方程的解答:骑车同学的速度为15千米/时【考点】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键5、 (1)(2)方程无解【解析】【分析】(1)先去分母、去括号,然后移项合并,系数化为1,最后进行检验;(2)先去分母、提公因式,然后去括号,移项合并,最后进行检验(1)解:去分母得:去括号得:移项合并得:系数化为1得:经检验,是分式方程的解分式方程的解为(2)解:去分母得:因式分解得:去括号得:解得:经检验,是分式方程的增根分式方程无解【考点】本题考查了解分式方程解题的关键在于正确计算求解是否对解进行检验是易错点
Copyright@ 2020-2024 m.ketangku.com网站版权所有