1、人教版八年级数学上册第十三章轴对称专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是44的正方形网格,其中已有3个小方格涂成了黑色现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑
2、色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A1个B2个C3个D4个2、如果一个等腰三角形的周长为17cm,一边长为5cm,那么腰长为()A5cmB6cmC7cmD5cm或6cm3、如图已知,把一张长方形纸片ABCD沿EF折叠后D与BC的交点为G,D、C分别在M、N的位置上,有下列结论:EF平分MED;2 = 23;: 1 +23=180,其中一定正确的个数是()A1B2C3D44、已知的周长是,则下列直线一定为的对称轴的是A的边的中垂线B的平分线所在的直线C的边上的中线所在的直线D的边上的高所在的直线5、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组
3、成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A3个B4个C5个D无数个6、如图,在ABC中,AB20cm,AC12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当APQ是以PQ为底的等腰三角形时,运动的时间是()秒A2.5B3C3.5D47、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或68、在平面直角坐标系中点P(1,2)关于x轴的对称点的坐标是()A(1,2)B(
4、1,2)C(1,2)D(2,1)9、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D8010、已知在ABC中,点P在三角形内部,点P到三个顶点的距离相等,则点P是()A三条角平分线的交点B三条高线的交点C三条中线的交点D三条边垂直平分线的交点第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置)测得的相关数据为:米,则_米2、点P关于x轴对称点是,点P关于y轴对称点是,则_3、已知AOB60,OC是AOB的平分线,点D为OC
5、上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_4、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:ADBE;PQAE;APBQ;DEDP其中正确的有_(填序号)5、已知,点P为内一点,点A为OM上一点,点B为ON上一点,当的周长取最小值时,的度数为_三、解答题(5小题,每小题10分,共计50分)1、在学习矩形的过程中,小明遇到了一个问题:在矩形中,是边上的一点,试说明的面积与矩形的面积之间的关系他的思路是:首先过点作的垂线,将其转化
6、为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹)在和中,又,_,_又_同理可得_2、某班举行文艺晚会,桌子摆成两条直线(),桌面上摆满了橘子,桌面上摆满了糖果,坐在C处的小明先拿橘子再拿糖果,然后回到座位,请你帮他设计路线,使其行走的总路程最短(保留作图痕迹)3、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点4、如图,在直角坐标系中,的三个顶点坐标分别为,请回答下列问题:(1)作出关于轴的对称图形,并直接写出的顶点坐标;(2)的面积为 5、在ABC中,DE垂直平分AB,分别交A
7、B、BC于点D、E,MN垂直平分AC,分别交AC,BC于点M、N(1)如图1,若BAC112,求EAN的度数;(2)如图2,若BAC82,求EAN的度数;(3)若BAC(90),直接写出用表示EAN大小的代数式-参考答案-一、单选题1、C【解析】【分析】根据轴对称的性质可直接进行求解【详解】解:如图所示:,共3个,故选:C【考点】本题主要考查轴对称图形的性质,熟练掌握轴对称的性质是解题的关键2、D【解析】【分析】此题分为两种情况:5cm是等腰三角形的底边长或5cm是等腰三角形的腰长,然后进一步根据三角形的三边关系进行分析能否构成三角形【详解】当5cm是等腰三角形的底边时,则其腰长是(175)2
8、6(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17527(cm),能够组成三角形故该等腰三角形的腰长为:6cm或5cm故选:D【考点】此题考查了等腰三角形的两腰相等的定义,三角形的三边关系,熟练掌握等腰三角形的定义是解题的关键3、C【解析】【分析】根据折叠的性质即可判断;根据平行线的性质和折叠的性质可得MEF3,再根据三角形外角的性质即可判断;由ADBC可得1+2180,然后结合的结论即可判断,进一步即可判断,进而可得答案【详解】解:由折叠的性质可得DEFMEF,即EF平分MED,故正确;ADBC,DEF3,DEFMEF,3MEF,23+MEF23,故正确;ADBC,1+2
9、180,即1+23180,故正确;1+390,故错误综上,正确的结论是,共3个故选:C【考点】本题考查了平行线的性质、折叠的性质、角平分线的定义以及三角形的外角性质等知识,属于常考题型,熟练掌握基本知识是解题关键4、C【解析】【分析】首先判断出是等腰三角形,AB是底边,然后根据等腰三角形的性质和对称轴的定义判断即可【详解】解:,是等腰三角形,AB是底边,一定为的对称轴的是的边上的中线所在的直线,故选:C【考点】本题考查了等腰三角形的判定和性质以及对称轴的定义,判断出是等腰三角形,AB是底边是解题的关键5、C【解析】【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45,右下4
10、5方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45、向右下45平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【考点】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.6、D【解析】【分析】设运动时间为x秒时,APAQ,根据点P、Q的出发点及速度,即可得出关于t的一元一次方程,解之即可得出结论【详解】设运动的时间为x秒,在ABC中,AB20cm,AC12cm,点P从点B出发以每秒3cm的速度向
11、点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当APQ是以PQ为底的等腰三角形时,APAQ,AP203x,AQ2x,即203x2x,解得x4故选:D【考点】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题7、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没
12、有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答8、A【解析】【详解】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A9、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键10、D【解析】【分析】根据线段
13、垂直平分线的性质解答即可【详解】解:在ABC中,三角形内部的点P到三个顶点的距离相等,点P是三条边垂直平分线的交点,故选:D【考点】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段的两个端点的距离相等是解答的关键二、填空题1、48【解析】【分析】先说明ABC是等边三角形,然后根据等边三角形的性质即可解答【详解】解:BAC=180-60-60=60BAC=ABC=BCA=60ABC是等边三角形AC=BC=48米故答案为48【考点】本题考查了等边三角形的判定和性质,证得ABC是等边三角形是解答本题的关键2、1【解析】【分析】根据关于坐标轴的对称点的坐标特征,求出a,b的值,即可求
14、解【详解】点P关于x轴对称点是,P(a,-2),点P关于y轴对称点是,b=-2,a=3,1,故答案是:1【考点】本题主要考查关于坐标轴对称的点的坐标特征,熟练掌握“关于x轴对称的两点,横坐标相等,纵坐标互为相反数;关于y轴对称的两点,横坐标互为相反数,纵坐标相等”是解题的关键3、4【解析】【分析】过点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30
15、,即DFM30在RtDMF中,DMF90,DFM30,DF2DM4故答案为4【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键4、【解析】【分析】根据等边三角形的三边都相等,三个角都是60,可以证明ACD与BCE全等,根据全等三角形对应边相等可得ADBE,所以正确,对应角相等可得CADCBE,然后证明ACP与BCQ全等,根据全等三角形对应边相等可得PCPQ,从而得到CPQ是等边三角形,再根据等腰三角形的性质可以找出相等的角,从而证明PQAE,所以正确;根据全等三角形对应边相等可以推出APB
16、Q,所以正确,根据可推出DPEQ,再根据DEQ的角度关系DEDP【详解】解:等边ABC和等边CDE,ACBC,CDCE,ACBECD60,180ECD180ACB,即ACDBCE,在ACD与BCE中, ,ACDBCE(SAS),ADBE,故小题正确;ACDBCE(已证),CADCBE,ACBECD60(已证),BCQ18060260,ACBBCQ60,在ACP与BCQ中, ,ACPBCQ(ASA),APBQ,故小题正确;PCQC,PCQ是等边三角形,CPQ60,ACBCPQ,PQAE,故小题正确;ADBE,APBQ,ADAPBEBQ,即DPQE,DQEECQ+CEQ60+CEQ,CDE60,D
17、QECDE,故小题错误综上所述,正确的是故答案为:【考点】本题考查了等边三角形的性质,全等三角形的判定与性质,以及平行线的判定,需要多次证明三角形全等,综合性较强,但难度不是很大,是热点题目,仔细分析图形是解题的关键5、80【解析】【分析】如图,分别作P关于OM、ON的对称点,然后连接两个对称点即可得到A、B两点,由此即可得到PAB的周长取最小值时的情况,并且求出APB度数【详解】解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点,PAB即为所求的三角形,根据对称性知道:APO=AP1O,BPO=BP2O,还根据对称性知道:P1OP2=2MON,OP1=O
18、P2,而MON=50,P1OP2=100,AP1O=BP2O=40,APB=240=80故答案为80三、解答题1、【解析】【分析】过点作的垂线,垂足为,分别利用AAS证得,利用全等三角形的面积相等即可求解【详解】证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹)如图所示,在和中,又,又同理可得故答案为:、【考点】本题考查了全等三角形的判定和性质,掌握全等三角形的面积相等是解题的关键2、见解析【解析】【分析】作点C关于直线AO的对称点C,点C关于直线OB的对称点D,连接CD交AO于M,交OB于N,则路线CM-MN-NC即为所求【详解】如图所示,小明的行走路线为,此时所走的总路程为的长,总路
19、程最短【考点】本题考查了轴对称-最短路线问题,作图-应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图解题的关键是利用了轴对称的性质,两点之间线段最短的性质求解3、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.4、(1)图见解析,;(2)【解析】【分析】(1)利用轴对称的性质即可画出,再根据坐标系中所画出的三角形即可写出其顶点坐标(2)如图利用割补法即可求出的面积【详解】(1)如图,即为所求,由图可知,
20、(2)如图取E(1,-2),F(1,-5),G(4,-5),分别连接E、G、F,由图可知四边形EGF为正方形所以,即故答案为:【考点】本题考查利用轴对称作图,利用轴对称的性质找出对称点的位置是解决问题的关键5、(1)EAN44;(2)EAN16;(3)当090时,EAN1802;当18090时,EAN2180【解析】【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AEBE,再根据等边对等角可得BAEB,同理可得,CANC,然后利用三角形的内角和定理求出B+C,再根据EANBAC(BAE+CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据EANBAE+CANBAC代
21、入数据进行计算即可得解;(3)根据前两问的求解方法,分090与18090两种情况解答【详解】解:(1)DE垂直平分AB,AEBE,BAEB,同理可得:CANC,EANBACBAECAN,BAC(B+C),在ABC中,B+C180BAC68,EANBAC(BAE+CAN)1126844;(2)DE垂直平分AB,AEBE,BAEB,同理可得:CANC,EANBAE+CANBAC,(B+C)BAC,在ABC中,B+C180BAC98,EANBAE+CANBAC988216;(3)当090时,DE垂直平分AB,AEBE,BAEB,同理可得:CANC,在ABC中,当18090时,DE垂直平分AB,AEBE,BAEB,同理可得:CANC,在ABC中,所以,当090时,EAN1802;当18090时,EAN2180【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有