ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:554.22KB ,
资源ID:875998      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-875998-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河南省信阳市普通高中2022-2023学年高三第二次教学质量检测数学(理科)试题 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

河南省信阳市普通高中2022-2023学年高三第二次教学质量检测数学(理科)试题 WORD版含解析.docx

1、2023 年1月 16日2022-2023学年普通高中高三第二次教学质量检测数学(理科)本试卷分第I卷(选择题)和第卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将本人的姓名准考证号等考生信息填写在答题卡上,并用2B铅笔将准考证号填涂在相应位置.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色墨水签字笔书写,字体工整笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.第

2、I卷一选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,那么等于()A.-2,0,1 B.-1,0,2 C.-2,-1,0 D.0,1,22.下列命题中,错误的命题有()A.函数f(x)=x与不是同一个函数B.命题“,”的否定为“,”C.设函数,则f(x)在R上单调递增D.设x,则“x0,所以,因为,所以(2)因为,由余弦定理可得,整理得,又a+b=2,解得a=b=1,所以18.(1)解:依题意对冰壶运动有兴趣的人数为人,则女生中对冰壶运动有兴趣的有人,男生中对冰壶运动有兴趣的有人,所以男生中对冰壶运动无兴趣的有人,所以列联表:

3、有兴趣没有兴趣合计男女合计,有的把握认为对冰壶运动是否有兴趣与性别有关.(2)解:从对冰壶运动有兴趣的学生中抽取人,抽到的男生人数女生人数分别为:(人,(人,则的所有可能取值为,所以,故的分布列是:012故.19.(1)由题意,则,两式相减得:.又,则.于是,是以a1为首项,2为公差的等差数列,是以a2为首项,2为公差的等差数列.当n为奇数时,当n为偶数时,.于是(2)当n为偶数时,故当n=22时,的最小值为-242.当n为奇数时,对应函数的对称轴为n=22,故当n=21或n=23时,取得最小值.于是,当n为偶数时,取得最小值为-242;当n为奇数时,取最小值为-243.综上:最小值为-243

4、.20.解:(1)由题意得a=2,所以,所以椭圆C的方程为.(2)(i)证明:设,因为P在椭圆C上,所以.因为,所以直线BP的方程为.所以N点的坐标为.(ii)M,B,Q三点共线.设,易得M(-6,-4k).由(i),所以直线AN的方程为.联立,可得.解得Q点的纵坐标为,所以Q点的坐标为所以,.由于,所以M,B,Q三点共线.21.(1)由题意知因为函数在上单调递增,所以,即对恒成立设,则当时,当时,所以函数在上单调递增所以(2)由题知所以,因为,所以,即为的最小值,为的一个极小值点,所以,解得当时,所以当时,(当且仅当时等号成立)所以在上单调递增当时,若,;若,所以在上单调递减综上,在上单调递减,在上单调递增所以当时,22.解:(1)曲线的参数方程为:(为参数),消去参数可得,点P的极坐标为,且,点P的直角坐标为,将代入曲线的普通方程的左边得,故在曲线内部.(2)直线的极坐标方程对应的普通方程为:,在直线上,故可设直线的参数方程为(为参数),与曲线的普通方程联立,化简整理可得,设两根为,由韦达定理可得,故.注意:本题用圆的极坐标方程来解同样给分!23.(1)解:因为,当且仅当“”时等号成立,所以当时,的最小值为3.(2)证明:因为,同理,所以三式相加得,所以,当且仅当“”时等号成立.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3