收藏 分享(赏)

宁夏银川贺兰县第四中学2013-2014学年高中数学选修2-2教案:3.1.2复数的几何意义.doc

上传人:高**** 文档编号:875253 上传时间:2024-05-31 格式:DOC 页数:3 大小:168.50KB
下载 相关 举报
宁夏银川贺兰县第四中学2013-2014学年高中数学选修2-2教案:3.1.2复数的几何意义.doc_第1页
第1页 / 共3页
宁夏银川贺兰县第四中学2013-2014学年高中数学选修2-2教案:3.1.2复数的几何意义.doc_第2页
第2页 / 共3页
宁夏银川贺兰县第四中学2013-2014学年高中数学选修2-2教案:3.1.2复数的几何意义.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、教学目标:知识与技能:理解复数与从原点出发的向量的对应关系过程与方法:了解复数的几何意义情感、态度与价值观:画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用教学过程:学生探究过程:1.若,则2. 若,则,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即=-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1) 讲授新课:复平面、实轴、虚轴:复数z=a+bi(a、bR)与有序实数对(a,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a、bR),由复数相

2、等的定义可知,可以由一个有序实数对(a,b)惟一确定,如z=3+2i可以由有序实数对(3,2)确定,又如z=2+i可以由有序实数对(2,1)来确定;又因为有序实数对(a,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A,横坐标为3,纵坐标为2,建立了一一对应的关系由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、bR)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对

3、应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,1)表示纯虚数i,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(2,3)表示的复数是2+3i,z=53i对应的点(5,3)在第三象限等等.复数集C和复平面内所有的点所成的集合是一一对应关系,即复数复平面内的点这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方

4、法.复平面内的点平面向量2. 复数平面向量例1若,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限解:选B .例2已知复数z1=cosi,z2=sin+i,求| z1z2|的最大值和最小值. 解 故的最大值为最小值为.例3满足条件的复数z在复平面上对应点的轨迹是( )A. 一条直线 B. 两条直线 C. 圆 D. 椭圆解:选C.巩固练习:课后作业:课本第106页 习题3. 1 A组4,5,6 B组1,2教学反思:复数集C和复平面内所有的点所成的集合是一一对应关系,即复数复平面内的点这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的

5、一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.1在复平面内,把复数对应的向量按顺时钟方向旋转,所得向量对应的复数是:( B )(A)2 (B) (C) (D)3+2 已知复数z的模为2,则z-i的最大值为:(D )(A)1(B)2(C)(D)33若且的最小值是( B )A2 B3 C4 D54(2007年上海卷)若为非零实数,则下列四个命题都成立: 若,则若,则则对于任意非零复数,上述命题仍然成立的序号是。4,5在复数范围内解方程(为虚数单位)。【思路点拨】本题考查共轭复数的模的概念和运算能力,可根据复数的代数形式进行处理.【解】原方程化简为,设z=x+yi(x、yR),代入上述方程得 x2+y2+2xi=1-i, x2+y2=1且2x=-1,解得x=-且y=,原方程的解是z=-i.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3