1、人教版九年级数学上册第二十五章概率初步专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最
2、大的是()A摸出的是白球B摸出的是黑球C摸出的是红球D摸出的是绿球2、从,0,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD3、如图,两个转盘分别自由转动一次(当指针恰好指在分界线上时重转),当停止转动时,两个转盘的指针都指向3的概率为()ABCD4、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()ABCD5、下列事件中,是必然事件的是()A晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来B买一张电彩票,座位号是偶数号C在同一年出生的13名学生中,至少有2人出生在同
3、一个月D在标准大气压下,温度低于0时才融化6、现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()ABCD7、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则的值为()A3B4C5D68、下列事件:(1)打开电视机,正在播放新闻;(2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(4)一个有理数的平方一定是非负数;(5)若,异号,则;属于确定事件的有()个A1B2C3D49、一个布袋中放着6
4、个黑球和18个红球,除了颜色以外没有任何其他区别则从布袋中任取1个球,取出黑球的概率是()ABCD10、小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A此规则有利于小玲B此规则有利于小丽C此规则对两人是公平的D无法判断第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号通过小客车数量(辆)26033030036
5、0240在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是_.2、在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是_.3、现有两个不透明的箱子,一个装有2个红球和1个白球,另一个装有1个红球和2个白球,这些球除颜色外完全相同从两个箱子中各随机摸出1个球,摸出1红1白的概率是_4、现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_5、对一批口罩进行抽检
6、,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为_三、解答题(5小题,每小题10分,共计50分)1、如图,现有一个可以自由转动的圆形转盘,被分成6个面积相等的扇形区域,指针的位置固定转盘游戏规则如下:花费5元可以随意转动一次转盘,当转盘停止时,指针指向哪个区域,就按照这个区域所示的数字相应地顺时针跳几格,然后按照如表格所示的说明确定奖金数额例如,当指针指向区域“2”时,就向前跳两格到区域“4”按奖金说明,区域
7、“4”所示的奖金为5元,就可得奖金5元区域123456奖金3元1元20元5元10元2元(1)在一次转盘游戏中,求获得2元奖金的概率;(2)请你用概率知识判断这个转盘游戏是否公平?若不公平,请改变转盘每个区域对应的奖金数额,使其公平2、 “双减”政策下,为了切实提高课后服务质量,阳光中学开展了丰富多彩的课后服务活动,设置了“A.体育活动,B.劳动技能,C.经典阅读,D.科普活动”四大板块课程若该校乐乐和贝贝随机选择一个板块课程(1)乐乐选“C.经典阅读”课程的概率是 ;(2)用画树状图或列表的方法,求乐乐和贝贝选不同板块课程的概率3、从2021年起,江苏省高考采用“”模式:“3”是指语文、数学、
8、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是_;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率4、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5这六个小球除标记的数字外,其余完全相同(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为 ;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一
9、个球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率5、小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:,是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形、同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色若配成紫色,则小颖去观看,否则小亮去观看这个游戏对双方公平吗?请说明理由-参考答案-一、单选题1、A【解析】【分析】个数最多的就是可能性最大的【详解】解:因为白球最多,所以被摸到的可能性最大故选A【考点】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的
10、可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等2、C【解析】【详解】在 这5个数中只有0、3.14和6为有理数,从这5个数中随机抽取一个数,抽到有理数的概率是故选C3、A【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向3的情况数,继而求得答案【详解】解:列表如下: 12341234共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果,两个转盘的指针都指向3的概率为,故选:A【考点】此题考查了树状图法与列表法求概率用到的知识点为:概率所求情况数与总情况数之比4、C【解析】【分析】利用列表法或树状图即可解决【详解】分别用r、b代表红色帽子、
11、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:RBWrrRrBrWbbRbBbW则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是故选:C【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解5、C【解析】【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件进行分析即可【详解】A.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来,属于随机事件,故A不符合题意;B.买一张电影票,座位号是偶数号,属于随机事件,故B不符合题意;C.在同一年出生的13名学生中,至少有2人出生在同一
12、个月,属于必然事件,故C符合题意;D.在标准大气压下,温度低于0时冰熔化,属于不可能事件,故D不符合题意故选:C【考点】本题主要考查的是对必然事件的概念的理解,必然事件指在一定条件下一定发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件不可能事件是指一定不会发生的事件6、D【解析】【分析】列举出所有的情况,再得到至少有一盒过期的情况数,利用概率公式计算即可【详解】解:有4盒同一品牌的牛奶,其中2盒已过期,设未过期的两盒为A,B,过期的两盒为C,D,随机抽取2盒,则结果可能为(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6种情况,其中至少有一
13、盒过期的有5种,至少有一盒过期的概率是,故选D【考点】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=7、A【解析】【分析】根据题意可得,然后进行求解即可【详解】解:由题意得:,解得:,经检验是原方程的解;故选A【考点】本题主要考查分式方程的解法及概率,熟练掌握分式方程的解法及概率是解题的关键8、B【解析】【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确
14、定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b0是随机事件综上所述:属于确定事件的有(3)(4),共2个,故选:B【考点】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键9、A【解析】【分析】由于每个球被取出的机会是均等的,故用概率公式计算即可【详解】解:根据题意,一个布袋中放着6个黑球和18个红球,根据概率计算公式,从布袋中任取1个球,取出黑球的概率是故选:A【考点】本题主要考
15、查了概率公式的知识,解题关键是熟记概率公式10、C【解析】【详解】抛掷两枚均匀的正方体骰子,掷得点数之和为偶数的概率是,点数之和为奇数的概率是,所以规则对两人是公平的,故选:C二、填空题1、B【解析】【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;同理同时开放AB与 AE进行对比,可
16、知B疏散乘客比E快;所以B口的速度最快故答案为B【考点】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题2、10【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解【详解】解:由题意可得,=0.2,解得,a=10故估计a大约有10个故答案为:10【考点】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系3、【解析】【分析】列表得出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得【详解】解:列表如下:红
17、白白红(红,红)(红,白)(红,白)红(红,红)(红,白)(红,白)白(红,白)(白,白)(白,白)由表知,共有9种等可能结果,其中摸出1红1白有5种结果,所以摸出的两个球颜色相同的概率为,故答案为:【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大4、【解析】【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得【详解】解:列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸
18、出的两个球颜色相同的概率为,故答案为【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大5、0.84【解析】【分析】观察表格合格的频率趋近于0.84,从而由此得到口罩合格的概率即可【详解】解:随着抽样的增大,合格的频率趋近于0.84,估计从该批次口罩中任抽一只口罩是合格品的概率为0.84故答案为:0.84【考点】本题考查了用频率估计概率,解题关键是熟练运用频率估计概率解决问题三、解答题1、 (1)(2)不公平,修改转盘每个区域对应的奖金数额见解析【解析】【分析】(1)根据题意列表,运用概率公式直接求出获得2元奖金的概率即可;(2)计算出平
19、均收益与5元相比较,即可得出这个转盘游戏是否公平,修改奖金总额为30元即可(1)转盤转到各格的概率相等,其对应的领奖数字与领奖金额如表:指针区域领奖数字金额121245362421545662所以,获得2元奖金的数字是6,共有2个,所以,获得2元奖金的概率为;(2)转一次转盘的平均收益为:(元)(元)这个转盘游戏对游戏者不公平,更改转盘每个区域对应的奖金数额如下表,区域123456奖金3元3元20元8元10元4元【考点】本题考查的是游戏公平性的判断注意尽管指针转到各区域的概率相等,但奖金数额不相等2、 (1)(2)树状图见解析,【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有
20、16种等可能的结果,其中小慧和小丽选同一个板块课程的结果有4种,再由概率公式求解即可(1)乐乐选“C.经典阅读”课程的概率是 ,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中乐乐和贝贝选不同板块课程的结果有12种,则乐乐和贝贝选不同板块课程的概率为【考点】此题考查的是用树状图法求概率树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比3、(1);(2)图表见解析,【解析】【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可(2
21、)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可【详解】(1);(2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,(选化学、生物)答:小明同学选化学、生物的概率是【考点】本题考查了等可能概率事件,以及通过列表法或画树状图法判断可能情况概率,根据概率公式事件概率情况,解题关键在于要理解掌握等可能事件发生概率4、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9中可能的结果,摸摸出的这两个小球标记的数字之和为7的结果有3种,再由概率公式
22、求解即可(1)解:将A袋,中的小球摇匀,从中随机摸出一个小球共三种情况,则摸出的这个小球上标记的数字,是偶数的概率为故答案为:;(2)解:画树状图如下,由树状图可知,共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,摸出的这两个小球标记的数字之和为7的概率为【考点】本题主要考查了利用概率公式计算概率及树状图法求概率,正确画出树状图是解题关键5、这个游戏对双方公平,理由见解析【解析】【分析】画出树状图,求出配成紫色的概率即可求解【详解】解:这个游戏对双方公平,理由如下:如图,由树状图可知,所有可能发生的组合有6种,能配成紫色的组合有3种,P(紫色)=,这个游戏对双方公平【考点】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平画出树状图,求出他们各自获胜的概率是解答本题的关键