收藏 分享(赏)

人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx

上传人:a**** 文档编号:869449 上传时间:2025-12-17 格式:DOCX 页数:24 大小:579.67KB
下载 相关 举报
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第1页
第1页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第2页
第2页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第3页
第3页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第4页
第4页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第5页
第5页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第6页
第6页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第7页
第7页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第8页
第8页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第9页
第9页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第10页
第10页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第11页
第11页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第12页
第12页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第13页
第13页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第14页
第14页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第15页
第15页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第16页
第16页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第17页
第17页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第18页
第18页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第19页
第19页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第20页
第20页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第21页
第21页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第22页
第22页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第23页
第23页 / 共24页
人教版九年级数学上册第二十二章二次函数定向练习试卷(解析版).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于二次函数,下列说法正确的是()A图象的对称轴在轴的右侧B图象与轴的交点坐标为C图象与轴的交点坐标为和D的最

2、小值为92、二次函数的图像如图所示,下列结论正确的是()ABCD有两个不相等的实数根3、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取何实数,y的值都小于0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则4、已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是()ABCD5、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D6、若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误

3、的是()x-10123yA二次函数图像与x轴交点有两个Bx2时y随x的增大而增大C二次函数图像与x轴交点横坐标一个在10之间,另一个在23之间D对称轴为直线x=1.57、已知二次函数yax24ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D18、当函数 是二次函数时,的取值为()ABCD9、抛物线经过点、,且与y轴交于点,则当时,y的值为()ABCD510、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分

4、)1、若函数的图像与坐标轴有三个交点,则c的取值范围是_2、写出一个满足“当时,随增大而减小”的二次函数解析式_3、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取值范围是_4、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+cx+m的解集为_5、在平面直角坐标系中,二次函数过点(4,3),若当0xa 时,y 有最大值 7, 最小值 3,则 a 的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过

5、点且垂直于轴的直线与抛物线及直线分别交于点、直线与直线交于点,当时,求值2、去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:,下表是某4个月的销售记录每月销售量(万件)与该月销售价x(元/件)之间成一次函数关系月份二月三月四月五月销售价x(元件)677.68.5该月销售量y(万件)3020145(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政

6、府当月补贴)3、为积极响应国家“旧房改造”工程,该市推出加快推进旧房改造工作的实施方案推进新型城镇化建设,改善民生,优化城市建设(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?4、已知抛物线yax2+3ax+c(a0)与y轴交于点A(1)若a0当a=1,c=1,求该抛物线与x轴交点坐标;点P(m,n)在二次函数抛物线yax2+

7、3ax+c的图象上,且nc0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当2cxc时,抛物线与x轴只有一个公共点,求a的取值范围.5、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);-参考答案-一、单选题1、D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可【详解】抛物线的对称轴为直线:x=-1,在y轴的左侧,故选项A错误;令x=0,则y=-8,所以图象与轴的交点坐标为,故选项B错误;令y=0,则,

8、解得x1=2,x2=-4,图象与轴的交点坐标为和,故选项C错误;,a=10,所以函数有最小值-9,故选项D正确故选:D【考点】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键2、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c0,结合b=-2a可得 3a+c0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得

9、到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【考点】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y

10、轴的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点3、C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键4、D【解析】【分析】由抛物线与轴没有公共点,可得,求得,求出抛物线的对称轴为直线,抛物线开口向上,再结合已知当时,随的增大而减小,可得,据

11、此即可求得答案.【详解】,抛物线与轴没有公共点,解得,抛物线的对称轴为直线 ,抛物线开口向上,而当时,随的增大而减小,实数的取值范围是,故选D【考点】本题考查了二次函数图象与x轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键.5、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【考点】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减6、D【解析】【分析】根据x=

12、1时的函数值最小判断出抛物线的开口方向; 根据函数的对称性可知当x=2时的函数值与x=0时的函数值相同, 并求出对称轴直线方程可得答案.【详解】A、由图表数据可知x=1时, y的值最小, 所以抛物线开口向上. 所以该抛物线与x轴有两个交点.故本选项正确;B、根据图表知, 当x2时y随x的增大而增大.故本选项正确;C、抛物线的开口方向向上, 抛物线与y轴的交点坐标是(0,),对称轴是x=1,所以二次函数图象与x轴交点横坐标一个在-10之间, 另一个在23之间. 故本选项正确;D、因为x=0和x=2 时的函数值相等,则抛物线的对称轴为直线x=1. 故本选项错误;故选:D.【考点】本题主要考查二次函

13、数性质与二次函数的最值.7、D【解析】【分析】由根与系数的关系求得AB的长度,由抛物线解析式求得点C的坐标,然后根据列出关于的方程,解方程即可【详解】令,则ax24ax+30,x1+x24,x1x2,AB|x1x2|,令x0,y3,OC3,SABCABOC,故选:D【考点】本题考查了二次函数与坐标轴交点的问题,一元二次方程根与系数的关系,熟练掌握一元二次方程跟与系数的关系是解题关键8、D【解析】【分析】根据二次函数的定义去列式求解计算即可【详解】函数 是二次函数,a-10,=2,a1,故选D【考点】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键9、A【解析】【分析】先利

14、用待定系数法求出抛物线解析式,再求函数值即可【详解】解:抛物线经过点、,且与y轴交于点,解方程组得,抛物线解析式为,当时,故选择A【考点】本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键10、C【解析】【分析】设矩形的一边长为xm,求出矩形面积即可判断【详解】设矩形的一边长为xm,另一边长为(1-x)m,面积用y表示,故选择:C【考点】本题考查列函数关系式,并判断函数的类型,掌握列函数的方法和函数的特征是解题关键二、填空题1、且【解析】【分析】由抛物线与坐标轴有三个公共点,与y轴有一个交点,易知抛物线不过原点且与x轴有两个交点,继而根据根的判别式即

15、可求解【详解】解:抛物线与坐标轴有三个公共点,抛物线与y轴有一个交点(0,c),c0,抛物线与x轴有两个交点,0,且,解得:且,故答案为:且【考点】本题考查了抛物线与x轴的交点,解题的关键是利用一元二次方程的判别式来判断抛物线与坐标轴的交点个数2、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边, y 随 x 增大而减小,得出a0,于是去a=-1,即可解答【详解】解:设抛物线的解析式为y=a(x-2)2,在抛物线对称轴的右边, y 随 x 增大而减小,a0,由题意得:,解得:x=0.2或x=-2.2(舍),答

16、:该市这两年旧房改造户数的平均年增长率为20%;(2)设多改造a户,最高投入费用为w元,由题意得:,a=-50,抛物线开口向下,当a-50=0,即a=50时,w最大,此时w=612500元,答:旧房改造申报的最高投入费用为612500元【考点】本题考查二次函数的实际应用,解题的关键是正确读懂题意列出式子,然后根据二次函数的性质进行求解4、 (1),m0或m3(2)-9(3)或或【解析】【分析】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断

17、并求出c的取值范围,从而求出c的最小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2)解:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个,解得:,的最小值为,(3)解:点A的坐标是(0,1),又当时,抛物线与x轴只有一个公共点,当时,当时,当时,解得:,或者,无解当时,无解,或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【考点】此题主要考查的是函数图象与

18、x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围5、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1