ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:590.01KB ,
资源ID:869439      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-869439-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版九年级数学上册第二十二章二次函数同步训练试题(含解析).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教版九年级数学上册第二十二章二次函数同步训练试题(含解析).docx

1、人教版九年级数学上册第二十二章二次函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大

2、小关系是()ABCD2、二次函数的图像如图所示,下列结论正确的是()ABCD有两个不相等的实数根3、某超市销售一种商品,每件成本为元,销售人员经调查发现,该商品每月的销售量(件)与销售单价(元)之间满足函数关系式,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A元,元B元,元C元,元D元,元4、已知点(1,y1),(2,y2)都在函数yx2的图象上,则()Ay1y2By1y2Cy1y2Dy1,y2大小不确定5、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD6、二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c的图象不

3、经过()A第一象限B第二象限C第三象限D第四象限7、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD8、抛物线y=ax2+bx+3(a0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0d1,则实数m的取值范围是()Am2或m3Bm3或m4C2m3D3m49、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD10、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒第卷(非选择题 70分)二、填空题(5小题,每小题4分,

4、共计20分)1、如图抛物线与轴相交于点,与轴相交于点,则的面积为_2、如图,在平面直角坐标系中,点A在抛物线yx22x2上运动过点A作ACx轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_3、抛物线图象与轴无交点,则的取值范围为;4、将二次函数化成一般形式,其中二次项系数为_,一次项系数为_,常数项为_5、如图,抛物线与直线的两个交点坐标分别为,则关于的方程的解为_三、解答题(5小题,每小题10分,共计50分)1、已知抛物线经过点(1,2),(2,13)(1)求a,b的值;(2)若(5,),(m,)是抛物线上不同的两点,且,求m的值2、已知二次函数()(1)求二次函数

5、图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的坐标3、在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒 (1)求每盒产品的成本(成本原料费其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(

6、不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润4、如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C(1)求的值;(2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q当时,求当P点到直线的距离最大时m的值;是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值5、某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:x(万元)10121416y(件)40302010(1)求y与x的函数关系式;(2)当销售单价为多少时,有最大利润,

7、最大利润为多少?-参考答案-一、单选题1、A【解析】【分析】根据题意确定出的取值范围,然后根据二次函数的性质即可得出,的大小关系【详解】解:点M为二次函数图象的顶点,点,直线分别交x轴,y轴于点A,B,令,解得:,令,解得:,点M在内,解得:,抛物线开口向下,与对称轴距离越近,其值越大;与对称轴距离越远,其值越小;对称轴在之间,比距离对称轴更近,故选:A【考点】本题考查了二次函数的性质,一次函数的图像与坐标轴的交点问题,熟知一次函数的与二次函数的性质是解本题的关键2、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,

8、所以abc0;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c0,结合b=-2a可得 3a+c0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【考

9、点】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点3、B【解析】【分析】设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可【详解】解:设每月总利润为,依题意得:,此图象开口向下,又,当时,有最大值,最大值为元故选:B【考点】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法

10、是解题的关键4、B【解析】【分析】分别求出和的值即可得到答案【详解】解:点(1,y1),(2,y2)都在函数yx2的图象上,故选B【考点】本题主要考查了二次函数图像上点的坐标特征,正确求出和是解题的关键5、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为

11、负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号

12、与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上6、D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答【详解】解:由势力的线与y轴正半轴相交可知c0,对称轴x=-0,得b0 所以一次函数ybx+c的图象经过第一、二、三象限,不经过第四象限故选:D【考点】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题7、C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答【详解】解:A、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;B、由一次函数图

13、象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;C、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,符合题意;D、由一次函数图象可知,a0,b=0,由二次函数图象可知,a0,b0,不符合题意;故选:C【考点】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质8、B【解析】【分析】把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=-,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,所以0|2-(-)|1,解得a或a-,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=-,所以-或-

14、,即可解答【详解】把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,16a+4b=1,4a+b=,对称轴x=,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,0|2()|100与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C

15、. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键10、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函

16、数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.二、填空题1、3【解析】【分析】根据抛物线y=-x2-x+,可以求得该抛物线与x轴和y轴的交点,从而可以得到点A、B、C的坐标,然后即可得到AB和OC的长,从而可以求得ABC的面积【详解】解:抛物线y=-x2-x+,当y=0时,x1=-3,x2=1,当x=0时,y=,点A的坐标为(-3,0),点B的坐标为(1,0),点C的坐标为(0,),AB=1-(-3)=1+3=4,OC=,ABC的面积为:ABOC=故答案为:3【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是求出点A、B、C的坐标,利

17、用数形结合的思想解答2、1【解析】【分析】由矩形的性质可知BDAC,再结合顶点到x轴的距离最近可知当点A在顶点处时满足条件,求得抛物线的顶点坐标即可求得答案【详解】解:ACx轴,当点A为抛物线顶点时,AC有最小值,抛物线yx22x2(x1)21,顶点坐标为(1,1),AC的最小值为1,四边形ABCD为矩形,BDAC,BD的最小值为1,故答案为:1【考点】本题主要考查了二次函数的性质及矩形的性质,确定出AC最小时的位置是解题的关键3、【解析】【分析】根据题意和题目中的函数解析式,可以得到顶点的纵坐标小于0,然后代入数据计算即可【详解】解:抛物线图象与轴无交点,该抛物线开口向下,且,即: ,解之得

18、:,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,明确题意,利用二次函数的性质解答是解答本题的关键4、 【解析】【分析】通过去括号,移项,可以把方程化成二次函数的一般形式,然后确定二次项系数,一次项系数,常数项【详解】y=2(x2)2变形为:y=2x2+8x8,所以二次项系数为2;一次项系数为8;常数项为8故答案为2,8,8【考点】本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数,一次项系数,常数项的值5、,【解析】【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,于是易得关于x的方程ax2-bx-c=

19、0的解【详解】解:抛物线与直线的两个交点坐标分别为,方程组的解为,即关于的方程的解为,故答案为x1=-2,x2=1【考点】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a0)的顶点坐标是,对称轴直线x=-也考查了二次函数图象与一次函数图象的交点问题三、解答题1、(1);(2)【解析】【分析】(1)将点的坐标分别代入解析式即可求得a,b的值;(2)将(5,),(m,)代入解析式,联立即可求得m的值.【详解】(1)抛物线经过点(1,-2),(-2,13),解得,a的值为1,b的值为-4;(2)(5,),(m,)是抛物线上不同的两点,解得或(舍去)m的值为-1.【考点】本题主要考查二次函数

20、性质,用待定系数法求二次函数,正确解出方程组求得未知数是解题的关键.2、(1)直线x=1;(2);(3)或【解析】【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)先求出直线MN的解析式,然后设点的坐标为,过点作轴的垂线交直线于点,得到PQ的长度,根据三角形的面积公式,即可求出答案【详解】解:(1)二次函数(),该二次函数图象的对称轴是直线:;(2)该二次函数的图象开口向上,对称轴为直线,当时,取得最大值,即,得:,该二次函数的表达式为:,即点的坐标为(3)设直线的解析式为,则,解得:,设直线的解析式为:,设点的坐标为,过点作轴的垂线交直线于点,如图则点的坐标是

21、,解得:,点的坐标是或【考点】本题考查二次函数的性质,一次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型3、(1)每盒产品的成本为30元(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元【解析】【分析】(1)设原料单价为元,则原料单价为元然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可【详解】解:(1)设原料单价为元,则原料单价为元依题意,得解得,经检验,是原方程的根每盒产品的成

22、本为:(元)答:每盒产品的成本为30元(2);(3)抛物线的对称轴为=70,开口向下当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当时,每天的最大利润为元【考点】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键4、(1)b=,c=;(2);不存在,理由见解析【解析】【分析】(1)将A(-1,0),B(3,0)代入y=x2+bx+c,可求出答案;(2)设点P(m,m2-2m-3),则点Q(m,m),再利用二次函数的性质即可求解;分情况讨论,利用菱形的性质即可得出结论【详解】解:(1)抛物线y=-x2+

23、bx+c与x轴交于点A(-1,0),B(3,0),解得:,b=,c=;(2)由(1)得,抛物线的函数表达式为:y=x2,设点P(m,m2-2m-3),则点Q(m,m),0m3,PQ=m-( m2-2m-3)=-m2+3m+3=-+,-10,当时,PQ有最大值,最大值为;抛物线的函数表达式为:y=x2-2x-3,C(0,-3),OB=OC=3,由题意,点P(m,m2-2m-3),则点Q(m,m),PQOC,当OC为菱形的边,则PQ=OC=3,当点Q在点P上方时,PQ=,即,解得或,当时,点P与点O重合,菱形不存在,当时,点P与点B重合,此时BC=,菱形也不存在;当点Q在点P下方时,若点Q在第三象

24、限,如图,COQ=45,根据菱形的性质COQ=POQ=45,则点P与点A重合,此时OA=1OC=3,菱形不存在,若点Q在第一象限,如图,同理,菱形不存在,综上,不存在以点O、C、P、Q为顶点的四边形是菱形【考点】本题是二次函数综合题,考查的是二次函数的性质,菱形的判定和性质等知识,其中,熟练掌握方程的思想方法和分类讨论的思想方法是解题的关键5、(1);(2)单价为13元时,利润最大为125万元【解析】【分析】(1)直接利用图表上的点的坐标,利用待定系数法求出一次函数解析式即可;(2)设总销售利润为W,则列出W与x的函数关系式,即可得出函数最值【详解】解:(1)设y与x的函数关系式为:,则,解得:,故y与x的函数关系式为: ;(2)设总销售利润为W,则有:,当,销售利润万,即单价为13万时,最大获利125万元【考点】本题主要考查待定系数法求一次函数解析式,以及根据二次函数的性质求最值,解题的关键是列出总销售利润与销售单价之间的函数关系

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1